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Abstract

Scoring functions for Bayesian network (BN) structure learning can conflict in their
rankings and previous work has empirically studied their effectiveness with an aim to
provide recommendations on their use. However, previous studies on scoring functions
are limited by the small number and scale of the instances used in the evaluation and
by a focus on learning a single network. Often, a better alternative to committing to a
single network is to learn multiple networks and perform model averaging as this method
provides confidence measures for knowledge discovery and improved accuracy for den-
sity estimation. In this paper, we empirically study a selection of widely used and also
recently proposed scoring functions. We address design limitations of previous empirical
studies by scaling our experiments to larger BNs, comparing on an extensive set of both
ground truth BNs and real-world datasets, considering alternative performance metrics,
and comparing scoring functions on two model averaging frameworks: the bootstrap and
the credible set. Contrary to previous recommendations based on finding a single struc-
ture, we find that for model averaging the BDeu scoring function is the preferred choice in
most scenarios for the bootstrap framework and a recent score called quotient normalized
maximum likelihood (qNML) is the preferred choice for the credible set framework.
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1. Introduction

A Bayesian network (BN) is a widely used probabilistic graphical model. Its structure
can be learned from data using the well-known score-and-search approach, where a scoring
function is used to evaluate the fit of a proposed BN to the data, and the space of directed
acyclic graphs is searched for the best-scoring BN. Scoring functions commonly balance
goodness of fit to the data with a penalty term for model complexity to avoid overfitting.
Common scoring functions for discrete data include AIC [1], BIC/MDL [2–4], and BDeu [5,
6]. More recently, the qBDJ [7] and qNML [8] scoring functions have been proposed.

There are three main aims for learning a Bayesian network [9, Ch. 16.2]: probability
density estimation, classification, and knowledge discovery. BNs are still widely used for
density estimation, especially in low dimension and data scarce regimes. Its knowledge
discovery capability, e.g., representing causal effects and conditional independence relations,
is still unmatched. Previous work has empirically studied the best scoring function to use
for each of these aims. However, previous studies are limited by the small number and
scale of the instances used in the evaluation, and by a focus on learning a single network
as opposed to the widely used methodology of learning multiple networks and performing
model averaging.

In early work, Van Allen and Greiner [10] compared AIC and BIC for density estima-
tion. Their work learned a single network and only studied randomly generated instances
up to 10 variables and two real-world networks: Alarm and Insurance. Carvalho [11] com-
pared AIC, BDeu, and BIC for classification. However, the experimental evaluation was
restricted to learning a single tree BN. Yang and Chang [12] compared BIC, BDe (a variant
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of BDeu), and several other scoring functions on density estimation and knowledge discov-
ery. The evaluation focused on small instances with five or fewer variables and learned a
single network.

More recently, Silander et al. [13] proposed a new scoring function called fNML and
compared AIC, BDeu, BIC, and fNML on density estimation and knowledge discovery. Liu
et al. [14] performed an extensive empirical comparison of AIC, BIC, BDeu, and fNML for
knowledge discovery and concluded that BIC was overall the preferred choice. However,
the evaluation used instances limited to at most 20 variables and did not consider model
averaging.

Silander et al. [8] proposed a new scoring function called qNML and compared it against
BDeu, BIC, and fNML on density estimation and knowledge discovery. The evaluation used
small instances: 11 variables or fewer for evaluating knowledge discovery and 15 variables
or fewer for evaluating density estimation. On the dimension of learning algorithms as
opposed to scores, Scutari et al., [15] compared constraint-based, score-based, and hybrid
learning algorithms. They found that the choice of statistical criteria (scores and their
matching criteria) strongly affect the quality of the learned network, and that score-based
algorithms and hybrid ones have similar performance with constraint-based ones slightly
falling behind. They also used both BIC and BDeu as the scoring functions and found no
apparent difference. Broom et al. [16] is, to the best of our knowledge, the only empirical
study of scoring functions that considers model averaging, as opposed to learning a single
network. Their study uses the bootstrap framework but only performs experiments over
two networks: Alarm and Insurance. By using such a limited testbed, they were not able
to make any recommendations on which scoring function to prefer in general.

In this paper, we fill the gap in previous empirical studies on scoring functions by scaling
up the experiments to cover larger sized networks, by using a much more extensive testbed
of instances, and by experimenting with two different model averaging frameworks: the
bootstrap framework [17, 18] and the credible set framework [19]. We study five discrete
scoring functions for Bayesian network structure learning (BNSL), namely AIC, BDeu, BIC,
qBDJ, and qNML, and evaluate their performance on knowledge discovery and density
estimation using both the ground truth BNs from bnlearn [18] and real-world datasets
from the UCI repository. In addition to structural Hamming distance (SHD) for evaluating
knowledge discovery, we also use the F-beta-measure and the weighted error rate, which
allows us to study tradeoffs between false positives and false negatives on discovering edges
in the network. We use the negative log likelihood as an approximation to the KL divergence
in density estimation. We find that the ideal score under the model averaging scheme is very
different from previous recommendations resulting from learning a single structure. Based
on our empirical evaluation, we conclude that BDeu is the clear preferred choice in most
scenarios for the bootstrap framework. For the credible set model averaging framework, we
conclude that qNML is the best choice for knowledge discovery, and that AIC is best suited
for density estimation with qNML trailing slightly behind.

2. Background

In this section, we briefly review the necessary background in Bayesian network structure
learning (BNSL), scoring functions, model parameters, model averaging frameworks, and
pruning rules.

2.1. Bayesian Networks

A Bayesian network (BN) is a probabilistic graphical model that consists of a labeled
directed acyclic graph G in which the vertices X = {X1 , . . . ,Xn} correspond to n random
variables, the edges represent direct influence of one random variable on another, and each
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vertex Xi is labeled with a conditional probability distribution P (Xi | Πi) that specifies the
dependence of the variable Xi on its set of parents Πi in G. A BN can alternatively be
viewed as a factorized representation of the joint probability distribution over the random
variables and as an encoding of the Markov condition on the nodes; i.e., given its parents,
every variable is conditionally independent of its non-descendants. Each vertex Xi has state
space Ωi = {xi1, . . . , xiri}, where ri ≥ 2 is the cardinality of Ωi and vik is the k-th value for
vertex Xi . Each Πi has the state space ΩΠi = {πi1, . . . , πirΠi

}, where rΠi is the cardinality
of ΩΠi and πij is the j-th vector of values for Πi. The parameter set Θ = {θijk} for all
i = {1, . . . , n}, j = {1, . . . , rΠi

} and k = {1, . . . , ri} represents a complete parameterization
in G where θijk = P (Xi = xik | Πi = πij).

The predominant method for Bayesian network structure learning (BNSL) from data is
the score-and-search method. Let D = {D1 , . . . ,DN } be a dataset where each instance Di

is an n-tuple that is a complete instantiation of the variables in X . A scoring function
σ(D | G ; Θ) assigns a real value measuring the quality of G given the data D. The BNSL
task is to find the acyclic graph G with the highest score.

2.2. Scoring Functions

Scoring functions provide the model selection criteria in BNSL. Ideally a scoring function
should have the following properties.
• Consistency [9, Def. 18.1]. The probability of the true graph P (G∗ | D) → 1 as N → ∞.

In terms of BNSL, the scoring function should choose the true graph G∗ given a sufficiently
large amount of data.

• Decomposability [9, Ch. 17.2.2]. The score of the entire network σ(D | G ; Θ) can be
decomposed as the sum of local scores associated to each vertex

∑n
i=1 σ(Xi | Πi; Θ).

• Normality [7] (score equivalence [20]). BNs of the same equivalence class have identical
scores. Two BNs are equivalent if they impose identical conditional independence relations
and can be structurally identified using the skeleton and v-structure [21].

• Regularity [22]. For two candidate parent sets Πij ⊂ Πik of the child Xi , if both of
them have identical empirical conditional entropy H(Xi | Πi∗), the smaller parent set Πij

should have a better score.
Most scoring functions for BNSL are based on either log likelihood or Bayesian Dirichlet

marginal likelihood. The log likelihood is the log probability of data D given a structure G
and is often rearranged by vertices X with their parent sets Π,

LL(D | G ; Θ) = log

N∏
i=1

P (Di | G ; Θ) =

n∑
i=1

rΠi∑
j=1

ri∑
k=1

nijk log θijk,

where nijk is the count for Xi = xik and Πi = πij in D. It is well-known that using the log
likelihood alone in BNSL yields the complete network since the likelihood never decreases
when an edge is added. Various forms of penalties have been proposed to address the
problem and several scoring functions have been derived that hold the desired properties
above, including Akaike information criterion (AIC) [1], the Bayesian information criterion
(BIC) [2], and a quotient score based on normalized maximum likelihood (qNML) [8]. The
scores can be defined generally as σ(∗) = LL(D | G ; Θ)− pen(∗) for some penalty pen(∗),
and we present different penalties below. The penalty for the AIC scoring function in this
work is defined as,

pen(AIC) =

n∑
i=1

rΠi(ri − 1).

AIC is traditionally used for supervised tasks as it minimizes mean squared error of predic-
tions [23] and is asymptotically equivalent to leave-one-out cross validation [24]. A lower
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AIC score means a model is considered to be closer to the truth. The penalty for the BIC
scoring function in this work is defined as,

pen(BIC) =

n∑
i=1

rΠi
(ri − 1)

logN

2
.

BIC estimates the posterior probability of a model being true. It penalizes models more
heavily than AIC and requires a sample size much larger than the number of parameters
in the model [14]. This definition of BIC is also equivalent to minimum descriptive length
(MDL) [4] scoring function under the assumption that N → ∞ and D1 , . . . ,DN are i.i.d. The
qNML score is derived from the factorized normalized maximum likelihood (fNML) [13] that
uses the vertex partitions in the normalizing factor. fNML is another log likelihood based
score with the penalty defined as the regret, where a possible approximation is reg(N, r) ≈
N

(
log(β) + (β + 2) log(Cβ)− 1

Cβ

)
− 1

2 log
(
Cβ + 2

β

)
, β = r

N , and Cβ = 1
2 + 1

2

√
1 + 4

β .
However, fNML is not score equivalent in order to maintain decomposability. This drawback
is recently addressed by the quotient version dubbed qNML. The penalty for the qNML
scoring function in this work is defined as,

pen(qNML) =
n∑

i=1

reg(N, rΠi
ri)− reg(N, rΠi

).

Analytically qNML is similar to both AIC and BIC since they are all maximum likelihood
based scores, though it has a more forgiving penalty.

From the Bayesian perspective, we can assume that the model parameters θijk are in-
dependent Dirichlet variables with the priors A = {αijk}. Because the Dirichlet distri-
bution is the conjugate prior distribution of the multinomial distribution, the posteriors
θijk | Dijk ;αijk ∼ Dir(αijk + nijk). It follows that,

LL(D | G ,Θ;A) = logP (D | G ,Θ)P (Θ;A)

=

n∑
i=1

rΠi∑
j=1

∑ri
k=1 log Γ(αijk + nijk)

log Γ(αij∗ + nij∗)
−

∑ri
k=1 log Γ(αijk)

log Γ(αij∗)
,

where αij∗ =
∑ri

k=1 αijk and nij∗ =
∑ri

k=1 nijk. We consider two scores from the Bayesian
Dirichlet (BD) family that have different priors. The likelihood-equivalence BD score with
uniform priors (BDeu) [5, 25] assigns αijk = α

rirΠi
for some equivalent sample size α, whereas

the BD score based on Jeffreys’ prior (BDJ) [22] assigns αijk = 0.5. The BDeu scoring func-
tion has an associated hyperparameter α that must be properly set prior to scoring. Previous
work has shown empirically (e.g., [14, 26]) the importance of choosing a suitable value for α.
Unfortunately, there is little guidance available for setting α. Recently, Suzuki [22] proves
that BDeu is not regular, often yielding unnecessarily complex structures. On the other
hand, the BDJ scoring function is regular yet not normal [22]. Therefore, it is not desirable
to use BDJ directly in BNSL. Switching the conditional scores σBDJ(Xi | Πi,Θ;A) in BDJ
to the quotient version σBDJ(Xi ,Πi|Θ;A)

σBDJ(Πi|Θ;A) yields the quotient BDJ (qBDJ) [7] that are both
regular and normal. The qBDJ scoring function in this work is defined as,

σ(qBDJ) =
n∑

i=1

rΠi∑
j=1

log

∑ri
k=1 Γ(nijk + 0.5)

Γ(nij∗ + 0.5)
−

n∑
i=1

log
Γ(0.5rirΠi

+N)Γ(0.5rΠi
)

Γ(0.5rΠi
+N)Γ(0.5rirΠi

)
.

By Stirling’s approximation, σ(qBDJ) = LL(D | G ; Θ)+O(1)−pen(qBDJ), where pen(qBDJ)
is exactly the second term in the definition.

Notably BDeu is the only irregular score in our study due to its broad application in
BNSL. Other scores in the following experiments hold all four desirable properties.
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2.3. Parameters

The parameters in log likelihood based scores are derived from maximum likelihood esti-
mates, i.e., θ̂ijk =

nijk

nij∗
. Although they are the closed form solutions to maxΘ LL(D | G ; Θ),

it is often desirable to apply smoothing to model parameters, especially when some nijk = 0.
In this work we use the m-estimate [27] defined as,

θ̂mijk =
nijk + m

rirΠi

nij∗ +
m
rΠi

.

Recall that for the BD family, the posteriors θijk | Dijk ;αijk ∼ Dir(αijk + nijk). Then
the expected value of the posterior θ̂BD

ijk is,

θ̂BD
ijk =

nijk + αijk

nij∗ + αij∗
.

Coincidentally the m-estimate is the same as the expected value of the posterior parameters
for BDeu when m = α, where m is also called the equivalent sample size but stems from
the idea of additive smoothing.

From the NML principle, we have yet another estimation called conditional NML predic-
tive probability [28] (sequential NML [8]),

θ̂sNML
ijk =

(nijk + 1)e(nijk)∑ri
k=1(nijk + 1)e(nijk)

,

where e(n) = (1 + 1/n)n and e(0) = 1. It has been shown [28] that sNML parameter
converges to Krichevsky-Trofimov predictive probability, a special cases of the m-estimate
when m = rΠi

. Nevertheless, sNML provides an optimality guarantee in terms of regret [13],
whereas the m-estimate has no known optimality property.

2.4. Model Averaging

We consider two model averaging frameworks for BNSL—the bootstrap and the credible
set frameworks—as these two methods have been shown to scale the best among all available
model averaging methods.

Bootstrapping is regarded as a general, flexible tool to provide confidence measures to
statistics estimates. In the context of structure learning in Bayesian networks, Friedman
et al. [17] proposed bootstrapping with thresholds to determine the existence of edges and
other features. In particular, the non-parametric approach samples the original dataset
with replacement and then heuristically learns a structure using the re-sampled data. After
repeating such procedure many times, we can get the empirical probabilities of all edges
by averaging on the learned structures. A threshold is finally applied to get the averaged
structure.

In the credible set approach, all networks that are optimal or near-optimal in score
are learned [19]. Note that the optimization problem defined by a scoring function and a
dataset is to find the maximum-score BN. Let OPT be the score of the optimal BN. The
set of networks learned from a dataset, denoted the credible set, is given by,

{G | score(G) ≥ OPT − logBF},
where the difference between the optimal score and the score of a network under consider-
ation is proportional to the logarithm of the Bayes factor (BF), a well-known criteria for
selecting between two models. Each network in the credible set can then be aggregated
to form a combined structure weighted by their score, where the scores of the networks in
the credible set are normalized to sum to 1 and the best model has the highest weight.
Alternatively, the networks can be equally weighted when averaged.
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Table 1. UCI datasets (left, middle) and bnlearn Bayesian networks (right), where n is
the number of variables in the dataset or network, and N is the number of instances in
the original UCI dataset.

UCI dataset n N

shuttle 10 58,000
census income 14 48,842
letter 17 20,000
online shopping 18 12,330
lymphography 19 148
hepatitis 20 155
parkinsons 23 195
credit card 24 30,000

UCI dataset n N

robot navigation 25 5,456
horse colic 27 368
steel 28 1,941
flags 29 194
breast cancer 31 569
soybean 36 683
biodeg 42 1,055
spectf heart 45 267

network n

sachs 11
child 20
insurance 27
water 32
mildew 35
alarm 37
barley 48
hailfinder 56
heparII 70
win95pts 76

2.5. Pruning

Applying a scoring function to a dataset is a computationally intensive task, as many
candidate parent sets need to be considered and scored. Fortunately, effective pruning rules
have been developed for some scoring functions that preserve optimality but significantly
reduce the candidate parents sets that need to be considered.

One of the most effective pruning rules for AIC and BIC is an upper-bound ⌈log2(N)⌉ on
the size of parent sets based on the sample size N . The rule is originally proposed in [29] for
the optimal BNSL problem and generalized in [19] for the credible set approach. This rule
enables AIC and BIC to scale much better than other scores under consideration. As we
will show in our experiments, in scores other than AIC and BIC we often need to manually
restrict the allowable maximum number of parents in order to score larger datasets within
reasonable resource limits. Another effective family of pruning rules can eliminate certain
parent sets and their supersets. Such rules for AIC/BIC and BDeu are originally proposed
in [29] for the optimal BNSL problem and generalized to credible sets in [19].

3. Experimental Methodology

In this section, we describe the methodology we followed to experimentally study and
compare scoring functions for Bayesian network structure learning in model averaging. We
explain construction of the datasets (Section 3.1), scoring the datasets and learning the
Bayesian network structures (Section 3.2), and the performance evaluation metrics (Sec-
tion 3.3). The scoring computations were conducted on SHARCNET1 and the structure
learning experiments were conducted on a shared server with 346 GB RAM and Intel Xeon
Gold 6148 at 2.4 GHz. For scoring the datasets memory usage was limited to 64 GB and
for structure learning a limit of 128 GB was imposed. For both scoring and learning, a
computation time limit of 24 hours was imposed for each instance.

3.1. Datasets

To empirically study the scoring functions, we considered a wide selection of datasets
from the UCI repository2 and networks from the bnlearn Bayesian network repository3

(see Table 1). We preprocessed the UCI datasets using a k-nearest neighbor imputation
algorithm, with k = 5, to fill in missing values and a supervised discretization method [30]
based on the MDL principle to discretize continuous variables. For evaluating the scoring

1https://www.sharcnet.ca
2https://archive.ics.uci.edu/ml
3https://www.bnlearn.com/bnrepository/

https://www.sharcnet.ca
https://archive.ics.uci.edu/ml
https://www.bnlearn.com/bnrepository/
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functions on the task of density estimation, each UCI dataset was then randomly partitioned
to a training set and a test set by a 70% to 30% ratio.

For evaluating the scoring functions on the task of structure learning, we used a total
of 90 ground truth BNs: 10 ground truth BNs came from the bnlearn repository and a
further 80 ground truth BNs were constructed following a similar approach to Liu et al. [14]
by (i) scoring each of the 16 UCI datasets using each of the five scoring functions AIC,
BDeu, BIC, qBDJ, and qNML in turn, (ii) learning an optimal network structure from each
scored dataset, and (iii) and fitting the parameters to each structure to give a final Bayesian
network. Given the 90 ground truth BNs, we used the logic sampling function rbn from
the bnlearn R package [18] to generate random samples of sizes N = 50, 100, 500, 1,000,
5,000, and 10,000 from the bif files. We collected three samples for each dataset size N ,
for a total of 18 samples for each ground truth BN. The number of variables n used in our
experiments, ranging from 11 to 76, pushes the limits of both the bootstrap and the credible
set model averaging approaches, especially when using scoring functions such as BDeu and
qNML that do not have as effective of pruning rules.

3.2. Scoring and Structure Learning

To evaluate the scoring functions within the bootstrap model averaging framework, we
used the implementation available as the function boot.strength from the bnlearn R pack-
age [18]. We used the default replication factor of 200 and the tabu search algorithm, as in
preliminary experiments it performed better than the alternative hill climbing algorithm.
Due to score availability in bnlearn, we only consider AIC, BDeu, and BIC in the bootstrap
experiments. A total of 4,320 bootstrap experiments were performed.

To evaluate the scoring functions within the credible set model averaging framework, we
implemented the scoring functions AIC, BDeu, BIC, qBDJ, and qNML in Python to ensure
a fair comparison4. The code takes a CSV file as input and generates a pruned score file
iteratively for each parent set size. Saving the intermediate scoring files that guarantee
optimality up to some parent set size is important since we do not limit the size a priori.
As we stated above, the pruning rules for AIC and BIC are far more effective than those for
other scores since an upper bound on the number of parents can be placed without losing
optimality. For other scores, we have to abort the scoring generation at the end of the 24-
hour limit. We note that similar experiments in [8, 14] have 20 variables as a computational
limit for exact algorithms using scores other than AIC and BIC. Once the score files were
generated, we used the eBNSL package [19], an extended version of GOBNILP [31], for collecting
the credible networks. All networks falling within a Bayes factor (BF) of 150 were collected
with a counting limit of 100,000. We also set the equivalent sample size α = 1 for BDeu
while the other scores do not have hyperparameters. We use a constant threshold 0.6 to
determine whether an edge is present, and we have verified that the score ranking does not
change with other reasonable thresholds. A total of 5,940 credible set experiments were
performed.

3.3. Performance Evaluation Metrics

We evaluated the scoring functions based on their performance on knowledge discovery
and density estimation. The former compares the learned structure with the ground truth
BN in terms of directed and undirected edges and the latter compares the inference ability
of the learned BNs. Each BN is weighted by its scores when the evaluation is conducted on
a credible set using model averaging. For scoring functions based on posterior probabilities
such as those in our experiments, the difference between two scores is proportional to the

4https://github.com/alisterl/hipss/releases/tag/v0.1.0

https://github.com/alisterl/hipss/releases/tag/v0.1.0
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logarithm of the BF for the underlying models. The choice of the BF also has implications
in model averaging since the worst model in the credible set will have a weight of 1

BF when
the best model has a weight of 1.

To evaluate scoring functions on knowledge discovery, we use the structural Hamming
distance (SHD). Given a ground truth network and a learned network, the SHD measures
the distance between the CPDAG representations of the networks, where a CPDAG captures
the equivalence class to which a network belongs (see [32]). Although the SHD has been
widely used in evaluating structure learning, it has a number of significant limitations. First,
it gives equal weight in case of a missing edge (FN), an extra edge (FP), and an edge in the
wrong direction. However, in many applications of knowledge discovery, one does not wish
to treat FP and FN as being of equal weight but rather wishes to specify an application-
specific tradeoff. Second, adding an edge can increase the SHD by more than 1 if it makes
other edges not compelled anymore, and thus SHD tends to penalize FP more than FN.

To address the limitations of SHD, we use two additional cost sensitive metrics: F-beta-
measure and weighted error rate (see, e.g., [33]). F-beta-measure is a generalization to the
F-measure, the harmonic mean of precision and recall. Recall that precision = TP / (TP
+ FP) and recall = TP / (TP + FN) where TP indicates the undirected edge is present in
both learned BN and ground truth BN. These metrics are particularly useful for BNSL since
there is a large number of true negatives, i.e., both the ground truth BN and the learned
BN are sparse. The F-beta-measure is defined as,

Fβ = (1 + β2)× precision × recall

(β2 × precision) + recall
.

When β = 1, the Fβ measure is the same as the F-measure, frequently referred to as the
F1 score. When β < 1, the Fβ measure gives more weight to precision and vice versa. The
cost sensitive weighted error rate is defined as (α × FN + FP)/(n(n − 1)), where n is the
number of variables in the dataset. When α > 1, the error rate gives more weight to FN and
thus penalizes missing edges over extra edges. The F-beta-measure and the weighted error
rate allow us to evaluate the performance on a spectrum with different tradeoffs between
precision and recall and between FP and FN. As we will show in our results, the rankings
of scoring functions will fluctuate as different weights are place on FP and FN.

For density estimation, we use negative log likelihood on a test set as an approxi-
mation to KL distance [9, Ch. 16.2.1]. Let P be the ground truth probability distri-
bution and P̂ be the probability distribution represented by a learned BN G over the
same space X . The KL divergence (relative entropy) is given by KL(P ∥ P̂ ) = −H(P ) −∑

x∈X P (x) log P̂ (x). The first term is fixed and can be dropped when comparing BNs with
the same assumed true distribution. The second term can be estimated by the negative log
likelihood − 1

m

∑m
i=1 log P̂ (Di | G ; Θ) on a test set Dtest = {D1 , . . . ,Dm}.

4. Experimental Results and Discussion

In this section, we present the results of our experimental study and discuss their im-
plications. The experimental results are aggregated using the Borda count. In the Borda
count, in each trial (for a fixed dataset and model averaging method) the scoring functions
are ranked according to the performance metric with ties allowed and each scoring function
is awarded points corresponding to the number of scoring functions strictly lower in the
ranking. Thus, the lowest ranked scoring function always gets 0 points and the highest
ranked scoring function gets at most k points (exactly k if there are no ties for highest
ranked), where k is the number of scoring functions under consideration. The Borda count
was chosen to aggregate the results as it is known to select broadly acceptable options.
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Table 2. Comparison of scoring functions using structural Hamming distance for the
bootstrap (left) and credible set (right) model averaging approaches. At each row, the
aggregated Borda count is shown when comparing the scoring functions on a set of
experiments that consist of three samples from each ground truth network and dataset
sample sizes of N = 50, 100, 500, 1,000, 5,000, 10,000.

Ground Scoring function
truth AIC BDeu BIC
bnlearn 259 145 85
UCI-AIC 225 266 96
UCI-BDeu 168 335 102
UCI-BIC 172 248 121
UCI-qBDJ 222 226 121
UCI-qNML 214 246 94
Total 1,260 1,466 619

Ground Scoring function
truth AIC BDeu BIC qNML
bnlearn 249 209 270 235
UCI-AIC 354 234 234 378
UCI-BDeu 306 330 249 376
UCI-BIC 258 240 300 339
UCI-qBDJ 370 188 270 430
UCI-qNML 344 184 267 410
Total 1,881 1,385 1,590 2168

We present the results of knowledge discovery using the bootstrap approach in Table 2
(left) for SHD and in Figure 1 for the weighted error rate and the F-beta-measure. In the
table, UCI-AIC, for example, refers to the ground truth set of networks that were constructed
by using the AIC scoring function to find the optimal structure for each UCI dataset and
then fitting the parameters to the structure to obtain a Bayesian network. Recall that the
alpha value indicates the tradeoff between FP and FN, whereas the beta value indicates the
tradeoff between recall and precision. In the bootstrap approach, we observe that BDeu
dominates both AIC and BIC in weighted error rate and F-beta-measure with varying
values of α and β. We have a similar observation for the SHD performance metric except
for the ground truth BNs from bnlearn. A finer-grained analysis of the SHD results for the
bootstrap approach reveals that the values are dominated by missing edges, and thus AIC,
with its lower penalty on complexity, produced structures with fewer missing edges.

We present the results of knowledge discovery using the credible set approach in Table 2
(right) for SHD and in Figure 2 for the weighted error rate and the F-beta-measure. The
scoring function qBDJ is omitted from the presented results, as in extensive preliminary
experiments it was dominated by qNML. The figures clearly show that BIC is a high
precision low recall score since its Borda count is much higher as β or α decreases from 1.
This is consistent with the fact that BIC imposes the most strict penalty on the number

Weighted error rate Fβ score

Figure 1. Comparison of scoring functions using error rate (left) and Fβ score (right)
on undirected edges for the bootstrap model averaging approach. At each α, β, the
aggregated Borda count is shown when comparing the scoring functions on a set of
experiments that consist of three samples from each bnlearn benchmark and dataset
sample sizes of N = 50, 100, 500, 1,000, 5,000, 10,000.



10

Weighted error rate Fβ score

Figure 2. Credible set. Comparison of scoring functions using error rate (left) and Fβ

score (right) on undirected edges for the credible set model averaging approach. At each
α, β, the aggregated Borda count is shown when comparing the scoring functions on a set
of experiments that consist of three samples from each bnlearn benchmark and dataset
sample sizes of N = 50, 100, 500, 1,000, 5,000, 10,000.

of parameters in the network. The aggregated results for the credible set approach also
suggests that qNML dominates the other scoring functions with varying tradeoffs between
either precision and recall or FP and FN. Considering SHD, we observe that qNML is the
best score on UCI datasets with ground truth generated using all 5 scores, whereas BIC is
the best score on the ground truth BNs from bnlearn. A finer-grained analysis of the SHD
results for the credible set approach reveals that the values here are dominated by extra
edges, and thus BIC comes out ahead due to its heavy penalty on complexity. We note that
the best score in the aggregated results is not always the best choice for individual datasets
but it is the overall winner if we consider all experiments.

In both the bootstrap and credible set approaches, our observations are different from
those in Liu et al. [14] where the conclusion using only the optimal network leads to BIC
being the dominant score. This difference can be attributed to (i) our evaluation is conducted
with model averaging and (ii) we use a much more extensive set of datasets both in network
sizes and in sample sizes in our experiments.

The results of density estimation are summarized in Table 3. Again, we use Borda count
to aggregate the results on all datasets from the UCI repository. For the log likelihood based
scores (AIC, BIC, and qNML), we learn their parameters using both the sNML method and
the smoothed maximum likelihood method with m = 1, though the two methods have
similar performance on the test data. The credible sets learned by BDeu and qBDJ are
parameterized by their assumed Dirichlet distributions with α = 1 and αijk = 0.5. Note
that the BDeu parameters are equivalent to the smoothed maximum likelihood ones since
m = α = 1. The negative log likelihood is calculated on a held-out test set from a 70%-30%
train-test split ratio and the results indicate that AIC is the clear winner in inference with
qNML trailing slightly behind. AIC’s advantage in inference is less apparent when we only
consider large BNs or large datasets, but BIC remains the worst performer for inference
in almost all cases. This observation suggests that BIC should not be used when density
estimation is the intended usage of the learned BN.

The runtime of the structure learning task for each score is reflective of the pruning rules
available to each score. In particular, AIC and BIC can complete the scoring task with al-
most all datasets while the other scoring functions require limits to be set on the maximum
number of parents for n ≥ 20 variables. The advantage of pruning rules for AIC and BIC,
however, does not show up in the metrics used for both tasks in our study. When we put a
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Table 3. Borda score comparison on inference task using the set of credible networks
learned from UCI datasets; e.g., the entry at column (AIC, snml) represents the Borda
score for the combination of AIC as scoring function and snml as parameter estimation
method.

AIC BDeu BIC qBDJ qNML
m snml bdeu m snml bdj m snml

85 73 49 29 22 66 68 56

limit on the size of the parent set, all scoring functions have similar runtime, suggesting that
such a limit is the defining factor in efficiency. The scale of our experiments push the limits
of model averaging approaches for Bayesian network structure learning. Although approxi-
mation methods that find a single high-quality network have been extended to thousands of
variables [34], in contrast to model averaging approaches, such single-network methods can-
not provide confidence measures for knowledge discovery and improved accuracy for density
estimation.

5. Conclusion

Scoring functions can conflict in their rankings and previous work has empirically studied
their effectiveness with an aim to provide recommendations on their use. However, previous
studies on scoring functions are limited by the small number and scale of the instances
used in the evaluation and by a focus on learning a single network. We have studied five
discrete scoring functions for BNSL, namely AIC, BIC, qNML, BDeu, and qBDJ, scaled
our experiments to large BNs using an extension to GOBNILP, and evaluated the scores
with confidence measures on structure discovery and density estimation. We have addressed
previous design limits by considering multiple metrics for structure discovery including the
SHD, the F-beta-measure, and the weighted error rate. The cost sensitive metrics present
a full picture with varying tradeoffs between precision vs. recall and FP vs. FN. We also
evaluated scores on negative log likelihood in density estimation. We used both the ground
truth BNs from bnlearn and real world UCI datasets in our structure learning tasks, and
we are the first to provide an extensive experimental study of scoring functions in a model
averaging framework.

Contrary to previous recommendations in [14], we find that qNML is the best contender
for knowledge discovery using the exact credible set approach, and BDeu using bootstrap-
ping, in most real world scenarios. We also find that AIC is best suited for density estimation
with qNML trailing slightly behind. Our empirical study provides an insightful look at dis-
crete score functions for Bayesian network structure learning and closes the gap in evaluating
BN structures with confidence measures.
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