
The 35th Canadian Conference on Artificial Intelligence
DOI: 0

Binary Classification with Minimum Observations

Shamir Khandaker*, Aminul Islam
School of Computing and Informatics
University of Louisiana at Lafayette

Lafayette, LA 70504

*shamir-towsif.khandaker1@louisiana.edu

Abstract

Binary classification with minimum observations is an important task in applications
where enough training data are not available. In this paper, we propose a binary clas-
sification approach that is based on an unsupervised ranking algorithm for objects with
numerical attributes. The ranking algorithm takes normalized attributes of numerical
objects as input and returns the weights of attributes. These weights are used to rank
the objects. We propose a class labelling algorithm that labels each side of the ranked
objects as a class using less than or equal to 15 labeled data objects or observations.
Evaluation on six different data sets shows that the proposed approach is comparable
to the state-of-the-art binary classification algorithms that use 70 percent observations
compared to less than one percent observations (on average) used by the proposed ap-
proach.
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1. Introduction
Binary classification with minimum observations is an important issue in many applica-

tions that do not have large numbers of training data. Some examples of applications could
be in elections, medical trials, economic recessions and sporting outcomes. It can also be
used to solve problems in materials science [1], to represent inorganic materials [2], predict
fundamental properties [3], create atomic potential [4]. We can furthermore use it to iden-
tify fundamental candidates [5], analyze complex reaction networks and guide experimental
designs [6].

Insufficient training data causes large accuracy/performance drops in most classification
algorithms [7]. Figure 1 shows how the performance (y-axis) of a traditional machine learn-
ing classifier is related to training sample sizes (x-axis).

Figure 1. Generic learning curve for classification
problem (taken from [8]).

From Figure 1, it is clear that for tra-
ditional machine learning classifiers, the re-
lationship between performance and train-
ing sample sizes is logarithmic. This means
that till certain point or threshold the ac-
curacy/performance grows according to a
power law and then reaches a plateau [9].
This threshold widely varies based on do-
main and data sets. However, in this paper,
we define ‘minimum’ as a number of obser-
vation below that threshold (more specif-
ically, less than or equal to 15). For ex-
ample, [10] showed that binary logistic re-
gression models based on 400 observations
are not even dependable. There is a broad
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agreement among researchers that binary logistic regression models that use less than 200
observations are highly unreliable.

That is why most state-of-the-art binary classification algorithms use 50 to 90% labeled
data objects to train the models. These algorithms do not perform well with a small training
data. This is because the models produced by these algorithms with a small training data
are biased and unstable.

The question is how to find a binary classification method which will use at most 15 obser-
vations (i.e., labeled training data) and is comparable to state-of-the-art binary classification
methods that require large training samples.

In this paper, we propose a binary classification approach that is based on an unsuper-
vised ranking algorithm for objects with numerical attributes. The ranking algorithm takes
normalized attributes of numerical objects as input and returns the weights of attributes.
These weights are used to rank the objects. We also propose a class labelling algorithm
that labels each end of the ranked objects as one distinct class using less than or equal to
15 labeled data objects or observations.

Overall, we make the following contributions in this work.
(1) We propose a binary classification approach that is based on an unsupervised ranking

algorithm. That is, we show how an unsupervised ranking algorithm can be used in
binary classification.

(2) We propose a class labeling algorithm that labels top side of the ranked objects as
one class and the bottom side as the other class using minimum (less than or equal
to 15) observations.

(3) We find an equation that determines the theoretical confidence—in terms of probability—
of finding the correct classes using the proposed class labeling algorithm.

The rest of this paper is organized as follows: the related works are discussed in Section 2.
Our proposed approach for binary classification with minimum observations is described in
Section 3. The experimental results on six datasets and discussion are in Section 4. Direction
for future research are described in Section 5, and the paper is concluded.

2. Related Work
Alattas et al. [11] propose a new ranking algorithm that is inspired by magnetic properties

(MP) and clustering. This algorithm groups the attributes into two clusters (i.e., positive
and negative cluster) and place each attribute a weight by using Pearson r correlation
coefficient. The idea of using magnetic properties is that if the correlation coefficient between
two attributes is positive, it means that they attract each other to be in the same cluster;
otherwise, they repulse each other to be in different clusters.

Ranking principal curve (RPC)) [12] model is another ranking algorithm that learns a
one-dimensional manifold function using five meta-rules to perform unsupervised ranking
tasks on multi-attribute observations. The other work that is closely related to [11] is Li
et al. [13], which is based on a two-phase attribute selection procedure. The first phase,
Spearman Ranking Correlation Coefficients (SRCC), identifies irrelevant attributes that
can adversely affect the ranking, and the second phase uses Extended Fourier Amplitude
Sensitivity Test (EFAST) that presents the total effect for each attribute to ranking and
then selects the attributes based on those phases. Parameterized function optimization
(PFO) [14] evolves an optimization function to learn the weight of the attributes using a
Lagrangian function.

Most state-of-the-art methods for ranking numerical objects remove irrelevant attributes
and objects with missing values. Alattas et al.’s [11] algorithm can deal with all attributes,
so there is no need to remove the irrelevant ones.

One recent classification task is fair binary classification. There is a potential risk that
sensitive information unfairly influences the outcome of binary classification models. For
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example if we want to predict whether a university applicant should get scholarship we
would like that a model do not use additive sensitive information such as race or gender.
Method proposed by [15] uses equal opportunity for binary classification where the method
requires true positive rate to be distributed equally across the sensitive groups. We use
[15]’s datasets to evaluate our proposed approach.

There are many existing ways to deal with having imbalanced dataset for training such
as “Change the loss function”, “Up-sample or Down-sample” [16]. A prominent technique to
handle small dataset is to generate synthetic data. In this approach deep learning models
are used for generating new synthetic data that are employed in applications such as “image
generation”, “video generation” and “image translation” [17]. However, this technique is not
useful to generate synthetic numerical data.

3. Proposed Methodology
Figure 2 depicts the high-level workflow of our proposed methodology. Given the attribute

values of a set of objects, we normalize and compute the correlation coefficient scores for
each pair of attributes for all objects. Then we use a modified version of Unsupervised
Ranking using Magnetic properties and Correlation coefficient (i.e., URMC) algorithm [11]
that takes sorted correlation coefficient scores for each pair of attributes from the dataset
as an input and returns the weight for each attribute. These attributes’ weights are used
to rank the objects. We assume that each side of this ranked list represents a class. The
Proposed class labelling algorithm uses minimum number of observations and determine the
class label. The last algorithm classifies objects based on the class label determined by the
previous algorithm.

Figure 2. Steps for binary classification with mini-
mum observations.

We use the following notations: Let X
refer to a set of n objects, i.e., X =
(x1, x2, . . . , xi, . . . , xn) and each of these ob-
jects has m number of attributes. Thus,
an object xi can be represented as a
set of these attribute values, i.e., xi =
(ai1, ai2, . . . , aij , . . . , aim), where aij refers
to the jth attribute value of object xi.
Again, let Aj refer to the set of jth at-
tribute values of all the n objects, i.e., Aj =
(a1j , a2j , . . . , aij , . . . , anj).

3.1. Normalization
Normalization is a fundamental step in any ranking algorithm [18, 19]. In general, the

range of each attribute values of a dataset widely varies. We use the same approach men-
tioned in [11] to normalize an attribute value of an object from 1 - 10 using the following
Equation 3.1:

Normalized Value (aij) = 1 + 9× (
aij − amin

amax − amin
) (3.1)

where aij is the jth attribute value of object xi, and amax, amin are the largest and smallest
values of jth attribute, respectively.

3.2. Correlation Coefficient Scores of Attributes
We already mentioned that Aj refers to the set of jth attribute values of all the n objects

(i.e., Aj = (a1j , a2j , · · · , aij , · · · , anj)) and each of these objects has m number of attributes.
For each Aj against the rest, we compute m2−m

2 attribute-pair correlation coefficient scores
(shown as grey cells in Figure 3). That is, rij is the correlation coefficient between Ai and
Aj . Using the special character of symmetric matrices can save time and storage during the
attribute-pair correlation coefficient computation.
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A1 A2 A3 · · · Am−1 Am

A1 r11 r12 r13 · · · r1(m−1) r1m

A2 r21 r22 r23 · · · r2(m−1) r2m

A3 r31 r32 r33 · · · r3(m−1) r3m

· · · · · · · · · · · · · · · · · · · · ·
Am−1 r(m−1)1 r(m−1)2 r(m−1)3 · · · r(m−1)(m−1) r(m−1)m

Am rm1 rm2 rm3 · · · rm(m−1) rmm

Figure 3. Symmetric matrix of attributes’ correlation co-
efficient.

Generally, a square matrix of order
m requires storage for m2 elements. If
it is a symmetric matrix then it can be
stored in about less than half the space,
m2−m

2 elements (shown as grey cells in
Figure 3). Only the upper (or lower) tri-
angular elements of the matrix excluding
the main diagonal need to be explicitly
stored. The implicit elements of the ma-
trix can be retrieved interchanging row
and column numbers. An efficient data
structure for storing a symmetric matrix is a simple linear array. If the upper triangular
elements of the matrix excluding the main diagonal are retained, the linear array, R, is
organized as: R = {r12, r13, · · · , r1m, r23, · · · , r2m, · · · , r(m−1)m}. We sort R in descending
order which is the input to the next URMC algorithm. The indexing rule to retrieve the
element rij from R is [20]:

rij ← R[(i− 1)(m− 1)− (i− 1)i/2 + j − 1] (3.2)

3.3. Modified URMC Algorithm

The original URMC algorithm [11] clusters the attributes into similar groups and updates
the weight of attributes that can be used to rank the objects. The original URMC algorithm
takes A1, A2, · · · , Aj , · · · , Am as input where Aj is the set of jth attribute values of all the
n objects (i.e., Aj = (a1j , a2j , · · · , aij , · · · , anj)). In our modified version, the sorted R
computed in the previous section (i.e., Section 3.2) is used as input. The reason of this
modification is that using the attribute-pairs with higher correlation coefficient earlier in
the algorithm makes the higher weight attributes stable earlier which has an impact on the
final weight of the attributes. In other words, feeding the algorithm the sorted correlation
coefficient of attributes rather than in random order has an impact on the final weight of
each attribute.

Figure 4. A comprehensive overview of URMC algo-
rithm (taken from [11]).

We already mentioned that the modified
URMC algorithm takes correlation coeffi-
cient scores of attributes of a dataset or-
dered from high to low and assigns each
attribute to a positive or negative cluster
with weights. Algorithm 1 demonstrates
the pseudo code of the modified URMC al-
gorithm which is based on magnetic proper-
ties and the correlation coefficients between
all possible pairs of attributes. Initially, all
the attributes are set in the positive cluster
with weight 0. If the correlation coefficient
is positive between two attributes, it signi-
fies that they attract each other to be in the same cluster; otherwise, they repel to be in
different clusters.

A comprehensive overview of URMC algorithm is shown in Figure 4 which is split into
two parts: top part with a positive rij (i.e., r(Ai, Aj) ≥ 0) and bottom part with a negative
rij (i.e., r(Ai, Aj) < 0) between attributes, Ai and Aj .

Cells A through D represent the top part with positive r between the attributes (Line 4
- 17, Algorithm 1). When two attributes are in the same cluster (either positive or negative),
positive r between the two attributes means that they attract each other to be in the same
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cluster with more weights. Now, if the r between two attributes is positive and they are in
different clusters, it means that they attract each other to bring the other in its own cluster.

Algorithm 1 : Modified URMC Algorithm.
INPUT: Sorted R
OUTPUT: W = (w1, w2, . . . , wj , . . . , wm)
1: W ← 0 ▷ initialize attributes’ weight

with 0
2: for i = 1 to m do
3: for j = i+ 1 to m do
4: if rij >= 0 then
5: if (wi>=0 && wj>=0) then
6: wi ← wi + rij
7: wj ← wj + rij
8: else if (wi<0 && wj<0) then
9: wi ← wi − rij

10: wj ← wj − rij
11: else if wi>=0 && wj<0 then
12: wi ← wi − rij
13: wj ← wj + rij
14: else
15: wi ← wi + rij
16: wj ← wj − rij
17: end if
18: else
19: if (wi>=0 && wj>=0) then
20: if wi < wj then
21: wi ← wi + rij
22: wj ← wj − rij
23: else
24: wi ← wi − rij
25: wj ← wj + rij
26: end if
27: else if wi<0 && wj<0 then
28: if wi < wj then
29: wi ← wi + rij
30: wj ← wj − rij
31: else
32: wi ← wi − rij
33: wj ← wj + rij
34: end if
35: else if wi>=0 && wj<0 then
36: wi ← wi − rij
37: wj ← wj + rij
38: else
39: wi ← wi + rij
40: wj ← wj − rij
41: end if
42: end if
43: end for
44: end for

Cell A shows that if attributes wi and
wj are in the positive cluster and their r
is positive, then they should be in the posi-
tive cluster and their weight will be updated
by adding the r to their previous weights.
This represents the concept that both at-
tributes attract each other to be more pos-
itive if they were in the positive cluster and
their r is positive (Line 5 - 7 Algorithm 1).
Cell B shows that if attributes wi and wj

are in the negative cluster and their r is
positive, then they should be in the nega-
tive cluster and their weight will be updated
by subtracting the r from their previous
weights. This shows that both attributes
attract each other to be more negative if
they were in the negative cluster and their
r is positive (Line 8 - 10, Algorithm 1).

Cell C shows that if attribute wi and wj

are in the positive and negative clusters, re-
spectively and their r is positive, then wi

attracts wj to be in the positive cluster and
wj attracts wi to be in the negative cluster.
Thus, the weight of wi will be updated by
subtracting the r from its previous weight.
And the weight of wj will be updated by
adding the r to its previous weight (Line 11
- 13, Algorithm 1). The idea of cell D is
similar to that of cell C.

On the other hand, cells E through J rep-
resent the bottom part with negative r be-
tween the attributes (Line 18 - 42, Algo-
rithm 1). In this part, since the r between
two attributes is negative, it means that the
two attributes repulse each other to be in
different clusters.

Cell E shows that if attributes wi and wj

are in the positive cluster and the weight of
wi is less than that of wj (i.e., wi < wj) and
their r is negative, then wi and wj repulse
each other to be in different clusters. Thus,
the weight of wi will be updated by adding
the r to its previous weight. As the r is
negative, adding it to the previous weight of
wi will shift wi towards the negative cluster.
And the weight of wj will be updated by
subtracting the r from its previous weight.
Again, as the r is negative, subtracting it
from the previous weight of wj will move
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wj towards more positive side (Line 19 - 22, Algorithm 1). The idea of cell F is similar to
that of cell E. Algorithm 2 : Class labelling algorithm

INPUT:
scores← list of tuples containing ranking
score and actual index
n← number of objects
pr ← % of positive targets # default 0.5
train← number of training data
OUTPUT:
result # if result is true then it means that
the positive labels is at the top of the list,
otherwise it is at the bottom
1: ts, fs← 0, 0
2: p← n ∗ pr
3: m← list()
4: for i = 1 to range(train) do
5: c_i← random(0, n− 1)
6: value, p_i← scores(j)
7: if c_i<=(p−1) && p_i<=(p−1) then
8: result← True
9: ts← ts+ 1

10: else if c_i>(p−1) && p_i>(p−1) then
11: result← True
12: ts← ts+ 1
13: else
14: result← False
15: fs← fs+ 1
16: end if
17: m.append((p_i, result))
18: end for
19: sort m in ascending order by p_i
20: if ts > fs then
21: result← True
22: else if ts = fs then
23: test1 ← first previous index of m
24: result1 ← first result of m
25: test2 ← last previous index of m
26: result2 ← last result of m
27: d1 ← test1
28: d2 ← n− test2
29: if d1 < d2 then
30: result← result1
31: else
32: result← result2
33: end if
34: else
35: result← False
36: end if

Cell G shows that if attributes wi and wj

are in the negative cluster and the weight of
wi is less than that of wj (i.e., wi < wj) and
their r is negative, then wi and wj repulse
each other to be in different clusters. Thus,
the weight of wi will be updated by adding
the r to its previous weight. And the weight
of wj will be updated by subtracting the
r from its previous weight (Line 27 - 30,
Algorithm 1). The idea of cell H is similar
to that of cell G.

Cell I shows that if attributes wi and wj

are in the positive and negative clusters, re-
spectively and their r is negative, then wi

and wj repulse each other to be in differ-
ent cluster. Thus, the weight of wi will be
updated by subtracting the negative r from
its previous weight. And the weight of wj

will be updated by adding the r to its pre-
vious weight (Line 35 - 37, Algorithm 1).
It means that wi and wj will move towards
more positive and negative side of the clus-
ter, respectively. The idea of cell J is similar
to that of cell I.

3.4. Ranking Objects based on URMC

The ranking score (RS) of an object, xi,
is computed using the URMC weights of
all the attributes from Algorithm 1 in Sec-
tion 3.3 by the following equation [11]:

RS(xi) = w1 × ai1 + w2 × ai2 . . .

+wj × aij . . .+ wm × aim

where wj is the URMC weight of attribute
j and aij is the jth attribute value of object
xi. Sorting these scores in descending order
with index will provide the ranked list of
objects.

3.5. Algorithm for Labelling Classes

The idea is that the top ranked elements
would be in one class (either positive or neg-
ative) and the bottom ranked would be in
another class. The labels of minimum num-
ber of objects (which is ≤ 15) can determine
which sides are positive and negative using Algorithm 2. The separation of one class from
the other can be done by estimating the percentage of objects in a class from the data.
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The purpose of Algorithm 2 is to determine on which side of scores does the positive
labels lie. If at the end of the execution of algorithm, result is True then it means that
positive labels lie at the top of the scores. If result is False, then it is at the bottom.

Algorithm 2 has four inputs. They are scores, n, pr, and train. scores is the sorted
list of tuples where each tuple contains the ranking score and its original index. The list is
already sorted on the basis of its score. The value n is the total number of objects/scores.
pr is the percentage of positive targets. If the percentage of positive targets is not known
then the algorithm assume that it is 0.5. train is the number of training observations used.

In Line 1, we assign two variables, named ts and fs, with 0. In these variables, we save
results that we get for all the tests that have been run in (Line 7- 16). In (Line 7 - 16), we
compute result and save it in m with the index of the score. If at the end, ts is greater
then fs then result is True as in the case of (Line 20 - 21), otherwise False as in the case
of (Line 34 - 36). But what if both ts and fs are equal? In (Line 22 - 33), we compare two
of the training data from the top-most and the bottom-most sides of the m. Then we take
the result of the training data that is nearest to the end side.

If the result variable, we get from Algorithm 2 is True then it means that the top p
objects have been classified into the positive class. Otherwise, it means that the top n− p
objects are in the negative class and the rest of them have been classified as positive class.
Here, n and p are the number of objects and the number of positive targets, respectively.

3.6. Algorithm for Calculating Accuracy Algorithm 3 : Classification accuracy
INPUT: result← output from the class
labeling algorithm
scores← list of tuples containing score,
actual index
n← number of objects
OUTPUT: accuracy
1: c1, c2 ← 0, 0
2: for i,value, p_i in enumerate(scores) do
3: if result then
4: if i<=(p−1) && p_i<=(p−1) then
5: c1 ← c1 + 1
6: end if
7: if i>(p−1) && p_i>(p−1) then
8: c2 ← c2 + 1
9: end if

10: else
11: if i<=(n−p−1) && p_i>=p then
12: c1 ← c1 + 1
13: end if
14: if i > (n−p−1) && p_i < p then
15: c2 ← c2 + 1
16: end if
17: end if
18: end for
19: result← (c1 + c2)/n ∗ 100

After getting the result from the Al-
gorithm 2, we compute the accuracy of
our classification method. Here we iterate
through the ranked objects and based on
the result that we get from Algorithm 2, we
check whether we have correctly classified
the object or not.

Algorithm 3 has three inputs: scores
which is the output of Section 3.4, result
is the output of Algorithm 2 and n is the
total number of objects.

In Line 2 - 18, we iterate through the
scores list. For each element in the list at
first we check the value in the result. If it
is True then it means that the positive la-
bels is at the top. If the current index of
each score, which is in the variable i, and
the p_i is lower than or equal to p− 1 then
we increment c1. If the current index and
the p_i is greater than p then we increment
c2. On the other hand, if the result is false
then we increment c1 and c2 for different
conditions. We increment c1 if current in-
dex is lower than or equal to n− p− 1 and
previous index is greater than or equal to
p − 1. We increment c2 if current index is
greater than n− p− 1 and previous index is lower than p− 1. At the end we add c1 and c2,
then multiply it with 100 and divide it by n.
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Figure 5. Comparison with different supervised learning models on (a) Heart Disease
Dataset, (b) Arrhythmia Dataset

3.7. Confidence of Finding Correct classes

Here we find the confidence in terms of probability of finding the correct classes. Suppose
the accuracy of binary classification of the proposed method is x. The confidence, C, (i.e.,
probability) that taking n sample labels (where n is an odd number) can correctly label the
classes with accuracy x is:

C =

⌊n/2⌋∑
i=0

(
n

i

)
xn−i(1− x)i (3.3)

For example, if we assume that the percentage of accuracy of the proposed binary classi-
fication method is 80 (i.e., x=0.8), then the confidence that taking 11 sample labels can
correctly label the classes is:

C =

5∑
i=0

(
11

i

)
0.811−i(1− 0.8)i

= 0.988

This could be interpreted as: If we use 11 labels from the dataset and the accuracy of the
proposed classification method is 80% then we are 98.8% confident that the label of the
proposed class labeling algorithm is correct. In other words, using 11 labels of data object,
the probability that our proposed class labeling algorithm can correctly label the classes is
98.8% if the accuracy of the proposed classification method is 80%.

4. Evaluation and Experimental Results

For our experiments we have used six datasets. They are as follows: Heart Disease,
Arrhythmia, COMPAS, Adult, German, and Drug. The last five datasets are used by [15]
for “Fair Binary Classification” task. We have collected these datasets from Kaggle.

4.1. Heart Disease

To test our proposed approach, we use Cleveland dataset [21] that contains 14 attributes
of 303 candidate heart disease patients. The 14th field (i.e., the “goal” field) refers to the
presence (value 1) or absence (value 0) of heart disease in the patient. We use the first 13
attributes as input in our method and the label of the top ranked object (which is 0) to mark
that the top ranked patients refers to negative cases. Figure 5(a) shows the accuracy of our
method compared to different machine learning measures [22]. Our method outperformed
SVM and Decision Tree classifier, and equalled Random Forest.
4.2. Arrhythmia

This dataset has 109446 samples and 187 features. Each feature represents a heart beat
signal. The target column has values from 0 to 4. Here 0 means ‘N’, 1 means ‘S’, 2 means
‘V’, 3 means ‘F’ and 4 means ‘Q’. When we pre-process the data, we replace all the values
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Figure 6. Comparison with different supervised learning models on (a) Compas dataset,
(b) Adult dataset

in target which is greater than 0 with 1. After pre-processing we have 18857 samples whose
target is positive. The rest are negative. Figure 5(b) shows the accuracy of our method
compared to different machine learning measures [22]. Our method outperformed Linear
SVM, Linear Logistic Regression, Support Vector Machine and Logistic Regression. It has
only been outperformed by Random Forest.

4.3. COMPAS

COMPAS dataset has 6172 samples and 11 features. This dataset is used for finding out
a person’s likelihood of re offending. Features include things such as Two_yr_Recidivism,
Number_of_priors etc. It has 2202 samples whose target is positive, Rest are negative.
Figure 6(a) shows the accuracy of our method compared to different machine learning mea-
sures [22].

4.4. Adult

Adult dataset has 48841 samples and 14 features. This dataset is used for finding out
a person’s likelihood of earning more than 50K. We pre-process this dataset by changing
workclass, education, marital-status, occupation, relationship, race, gender, native-country
into one-hot vectors [23]. We also use age, fnlwgt, capital-gain, capital-loss, hours-per-week
features as it is. It turns our feature size into 107. Of the sample, 76% are less than or
equal to 50K. The rest of the 24% are greater than 50K. Figure 6(b) shows the accuracy of
our method compared to different machine learning measures [22].

4.5. German

German dataset has 1000 samples and 10 features. This dataset is used for finding out
whether a person has good or bad credit risk. We pre-process this dataset by changing sex,
job, housing, saving accounts, checking account, purpose into one-hot vectors [23]. We also
use age, credit amount, duration features as it is. It turns our feature size into 27. Of the
sample, 699 are good credit risk. The rest are greater than bad. Figure 7(a) shows the
accuracy of our method compared to different machine learning measures [22].

4.6. Drug

Drug dataset has 215,063 samples and 2 features. This dataset is used to find out whether
the rating of a drug is greater than 5 or not. We pre-process this dataset by changing rating
less than or equal to 5 to 0 and the rest to 1. We also convert the date feature to Unix
timestamp. 150,768 samples are positive samples. Figure 7(b) shows the accuracy of our
method compared to different machine learning measures [22].
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Figure 7. Comparison with different supervised learning models on (a) German Dataset,
(b) Drug Dataset

Figure 8. 100 test run of Class Labeling Algorithm on the Heart Disease Dataset using
different number of training data.

4.7. Evaluation of Confidence of Finding Correct classes

Figure 8 shows the number of times our class labelling algorithm correctly labels the
classes for different number of training samples. Each trough in the figure means one
instance of incorrect labeling. For example, Figure 8(f) shows that if we use 11 training
samples of “Heart Disease” dataset, only one time out of 100 times, our class labelling
algorithm incorrectly labels the classes. We run our class labelling algorithm with different
number of training samples. We conduct eight experiments shown in Figure 8(a) to (h) where
we use 1, 3, 5, 7, 9, 11, 13 and 15 training samples, respectively. As we see from Table 1,
the confidence (or the probability) that the class labeling algorithm correctly predicts the
classes increases with the increase of the observation/training data. The confidence reaches
100% with 15 training samples. This means that we are 100% confident that if the class
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labeling algorithm uses 15 training samples, it will correctly label the classes for those data
sets shown in Table 1. The practical/experimental results that we get is almost same to the
theoretical expected results using Equation 3.3 as shown in Table 1.

4.8. Discussion

No. of train Heart Disease Arrhythmia
samples Expected Practical Expected Practical

1 0.80 0.78 0.79 0.78
3 0.89 0.85 0.88 0.89
5 0.94 0.89 0.93 0.97
7 0.97 0.88 0.96 1.00
9 0.98 0.96 0.98 0.99

11 0.99 0.99 0.99 0.99
13 0.99 0.99 0.99 1.00
15 1.00 1.00 1.00 1.00

Table 1. Comparison of the expected confidence val-
ues and the experimental/practical confidence values
that the class labelling algorithm correctly labels the
classes for Heart Disease and Arrhythmia Datasets.

The authors of [15] have used 76612,
4320, 34188, 700 and 150544 training sam-
ples for “Arrhythmia”, “COMPAS”, “Adult”,
“German” and “Drug” data sets, respec-
tively. On the other hand, in our exper-
iments we have used at most 15 training
samples as shown in Table 2. For several
data sets, the accuracy of our proposed ap-
proach is comparable to that of [15]. One
of the reasons that we do not get compara-
ble result for the drug dataset is that several
features of this data set such as ‘review’ and
‘condition’ are text features and we could
not incorporate these text features in our algorithm because the ranking algorithm uses
only numerical features.

5. Conclusion
No. of % of No. of % of

training training training training
Dataset samples samples samples samples

used by used by used by used by
other other our our

methods methods method method
Heart 212 70% 15 4.95%

Arrhythmia 76612 70% 15 0.013%
COMPAS 4320 70% 15 0.243%

Adult 34188 70% 15 0.030%
German 700 70% 15 1.5%
Drug 150544 70% 15 0.006%

Table 2. Comparison of training observations used
for different data sets by other methods versus our
method.

This paper shows that an unsupervised
ranking algorithm for objects with numer-
ical attributes can be used for binary clas-
sification task. One of the strong points of
the proposed approach is that it uses a min-
imum number of observation. For example,
in one of the evaluation data set (i.e., Ar-
rhythmia), our proposed approach achieves
79.1 percent accuracy using only 15 obser-
vations (i.e., 0.013% of the data set) com-
pared to 83 percent accuracy achieved by a
state-of-the-art algorithm that uses 76,612 observations (i.e., 70% of the data set).

One of the important future works on this task could be how to use this approach for
multi-class classification problem. Another important future work could be how to incorpo-
rate text features in the proposed classification approach.
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