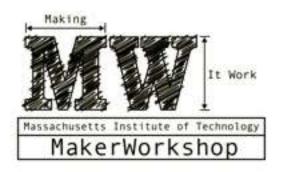
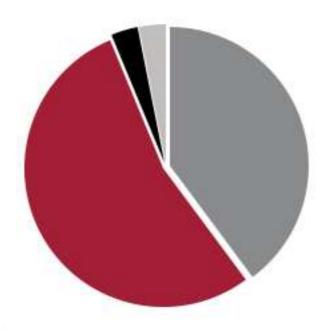


Quantifying Success in a Student-Run Makerspace: a Case Study and Survey-Based Analysis

Margaux Filippi & Daniel S. Dorsch



MIT MakerWorkshop

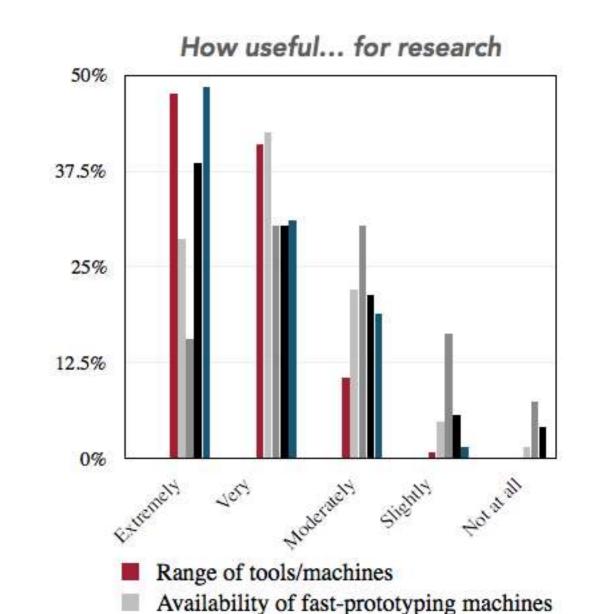

- MakerWorkshop: an experiment within the mechanical engineering department
 - Student-run makerspace with faculty oversight
 - Not a machine shop: research lab / makerspace / community lounge, fluid based on student vision
 - Opened May 2015
- Successes and lessons learned from a survey assessment
 - ~85% of the respondents considered MW a unique asset to the department
- Designed by students for students
 - Probably key factor behind the success of this maker space
 - Space built with student needs in mind
 - Focus: enable idea to prototype engineering and test engineering analysis
 - Student community

Quantifying Success

- Assess how and why MW was used for different applications, over other spaces
 - coursework,
 - research
 - personal projects
 - entrepreneurial endeavors
- MIT Teaching and Learning Laboratory
- Qualtrics survey
 - Users: 15% response rate
 - Student mentors: 60% response rate
- Also surveyed about their perception of the community and place of MW within the department

- Undergraduate student (40%)
- Graduate student (54%)
- Staff, postdoc or faculty (3%)
- Alumni (3%)

MW user distribution



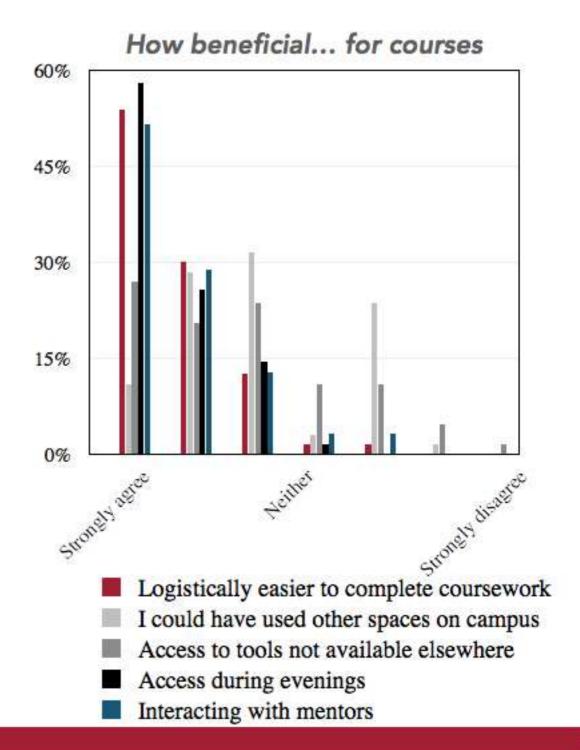
Designed by students:

1. the full cycle of "engineering making"

- Afternoon and evening hours
- Range of machines/tools otherwise not easily available on campus
- Uniquely suited for the full cycle of engineering within a single space
 - design, fabrication and testing
 - instrumentation & measurement tools for rapid validation of prototypes
 - "Measurement" tools more often used than the lathe or the waterjet

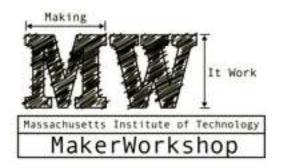
Breadth of tools for measurement/instrumentation

earning environment and community


Hours of operation

Designed by students: 2. community

- Community aspect especially beneficial to users for their courses
- Student-run: mentors found to be easily approachable and valuable resources
 - also instill discipline and respect for the space among peers
- ~70% of respondents listed "meeting new people" or "connecting with friends" as added benefits of working in the space



Experiment outcomes after 2 years

- With faculty oversight, student were able to run the space effectively
 - managed a substantial machine capital
 - determined what they needed to enhance their research output
- A student-run makerspace is beneficial for both users and mentors and fostered an environment conducive to learning
- A lot of flexibility in running the space

MIT MakerWorkshop' success

- "Machine capital" explains only part of MW's popularity
 - low total # of machines: a single mill and lathe
- Range of tools/machines + breadth of tools for measurement/instrumentation listed as major benefits
 - · focus on the student needs for research
 - · focus on the full cycle of mechanical engineering design
 - offering instruments for measurement & validation is highly valued by students.
- Reasons for success
 - community
 - original design around the student experience

Acknowledgements

- Prof. Martin Culpepper, MIT MakerWorkshop's faculty advisor
- MIT MakerWorkshop mentors and users
 - especially those who filled out the survey
- MIT Project Manus
- MIT School of Engineering, MIT Department of Mechanical Engineering, Martin Trust Center, Richard H. Lufkin Memorial Fund