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Abstract

Software Requirement Specifications (SRS) documents provide the description of
requirements and expectations attributed to software products. The structured text
present in the SRS documents serves as a guide for developers in defining various func-
tions in the process of software development. Software specific entity extraction is an
important pre-processing step for various Natural Language Processing (NLP) tasks in
the requirement engineering domain such as entity-centric search systems, SRS document
summmarization, requirement classification, and requirement quality management. Re-
cent advances in transformer-based models have significantly contributed to NLP and
information retrieval problems, and achieved state-of-the-art performance for domain
specific entity extraction tasks. In this study, we employ the transformer models in-
cluding BERT, RoBERTa and ALBERT for software specific entity extraction. For this
purpose, we annotate three requirement datasets, namely, DOORS, SRE, and RQA with
varied sets of software specific entities. Our numerical study shows that transformer mod-
els are able to outperform the traditional approaches such as ML-CRF, and we find that
BERT variants improve the F1-scores by 4% and 5% on the DOORS and SRE datasets,
respectively. We conduct entity level error analysis to examine the partial and exact
matching of entities and respective boundaries. Lastly, we experiment with few-shot
learning to create sample efficient NER systems with template-based BART model.

Keywords: Software-specific entity extraction, Transformer models, Few-shot learn-
ing, Software Requirement Specifications (SRS)

1. Introduction

Software Requirements Specifications (SRS) documents comprise a road map of the
project that is being developed. It details the scope, the budget constraints, intended
use-cases, the functionalities to be expected, the sequence of actions to be performed and
the obstacles to overcome. SRS documentation is an important aspect of any product devel-
opment to ensure that everyone is in accord with the plan of action, from the stakeholders
to the development team.

The content of the SRS documents is curated in such a way that it is comprehensible
for all the personnel involved in the software development process, and humans in general.
Machines, on the other hand, generally cannot make sense of these documents that are
text-heavy and filled with technical jargon. Accordingly, for automation purposes, these are
a collection of structured natural language texts and, in order to discern the contents of
these documents, we can employ information extraction or entity identification systems.

Named entity recognition (NER) is a type of information retrieval technique that aims to
find and sort tokens in the text into predefined categories. Applied to the SRS documents,
the named entities would be software specific designations such as actor, action, operator,
user, object, GUI, hardware, API, and metric. Executing NER on SRS documents works as
a precursor to various entity-centric applications such as requirement classification, software
document classification, text summarization, data analysis, use case generation, and topic
modeling.



2

Research motivation . SRS documents can be perceived as well-structured text which ex-
plain the functional and non-functional requirements of a system. Extraction of software
specific entities can provide us with a high-level overview of SRS documents and this infor-
mation can be further analysed to group similar and dissimilar requirements. Specifically,
these software specific entities can be utilised as an additional feature in requirement qual-
ity assessment systems to improve the quality of software requirements. Most importantly,
we can train machine learning models with requirement texts and software-specific entities
as features for various natural language processing (NLP) tasks in requirement engineering
domain. In this study, we explore the capabilities of transformer-based models for software
specific entity extraction.

Contribution . The main contributions of our study can be summarized as follows:

• We implement machine learning-based ML-CRF [1] and widely used transformer
models including BERT [2], RoBERTa [3], and ALBERT [4] over three require-
ment datasets for software specific entity extraction. To the best of our knowledge,
previous studies did not consider transformer models in software-specific entity ex-
traction.

• We conduct a detailed numerical study by considering five different NER models and
three distinct annotated requirement datasets with varying software-specific entity
sets. These datasets are obtained from open-source SRS documents associated with
different industries, such as aerospace, automobile, healthcare, and transportation.
We also present entity level error analysis to capture the partial entity and boundary
matches in a software-specific entity extraction task.

• We investigate few-shot learning methods for the NER task. We implement the
text-to-text language model BART [5], which restructures the requirements into
input text and candidate text, and predicts the software specific entity tags for the
given input. We find that few-shot learning performs better than the BERT variants
for smaller training sets, however, this comes at the expense of increased training
time.

2. Literature review

Only a few studies consider NLP models for NER tasks in the field of software engi-
neering. The SoftNER model presented by Tabassum et al. [6] is a BERT-based model
modulated to work well on StackOverflow data to identify code tokens and software-related
token labels. RucyBERT is a BERT model trained to tackle textual data specific to the
cyber-security domain [7]. DBNER use a deep neural network model for bug-specific entity
recognition [8]. It employs a combination of bidirectional LSTM (BiLSTM) and conditional
random field (CRF) models to learn many features from large amounts of data extracted
from bug repositories, and incorporates an attention layer to refine the entity recognition
process.

In a recent study, Nayak, Kesri, and Dubey [9] presented a knowledge graph-based tool
that generates requirement text instances from software engineering documents. They pro-
posed a constituency parse tree-based path finding algorithm for test intent extraction, and
employed a CRF-based model with automatic feature engineering for the NER task. Ye
et al. [10] developed a software-specific NER method (S-NER) and identified the design
challenges in creating a NER methodology for social content data. They annotated Stack
Overflow posts with five tags namely, API, platform, software standard, programming lan-
guage, and tools. They trained an ML-CRF model with software-specific gazetteers and
unsupervised word clusters. Reddy et al. [11] defined a set of 22 software-specific entities
in Stack Overflow posts which includes programming languages (e.g., web development and
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scripting languages), names of software tools, frameworks and protocols. Their numerical
study revealed that BiLSTM-CRF performed better than ML-CRF for their NER task.

Many previous studies have used few-shot learning for NER when the number of in-
domain labeled data instances is very low. Yang and Katiyar [12] demonstrated impressive
results for standard few-shot learning applications with a model using nearest neighbor
learning and structured inference. Das et al. [13] proposed CONTaiNER, a new contrastive
learning method that enhances the inter-token distribution distance for using the few-shot
setting on NER. FewNER made use of a meta-learning technique, and it applied novel N-way
K-shot learning approach for applying few-shot learning to NER [14].Fritzler, Logacheva,
and Kretov [15] used a metric learning approach called Prototypical Networking which learnt
the intermediate representations of tokens that fall under the same named entity category.
This method allows the classification of tokens with very few training instances and also
shows promise to be used as a zero-shot learning method. Text-to-text language models
such as BART and T5 have the ability to transform original sentences into proper useful
statements for the NER tasks, as can be seen in the examples “Paris is a type of city”, “John
is a type of person”. Cui et al. [5] utilized text-to-text BART model for NER in few-shot
mode. They treated NER as text-to-text and a language model ranking problem. That is,
input sentences and candidate statement templates are ranked and used to produce named
entity candidates based on the ranking scores.

3. Methodology

In this section, we first describe the three requirement datasets annotated with software-
specific entities. Then, we briefly summarize the machine learning and transformer-based
models used for NER, and we explain the experimental setup for our numerical study.
Figure 1 shows the process of training the NER models with software requirements as input.

Figure 1. An overview of the work flow for transformers- and ML-CRF-based NER
models

3.1. Data preparation

We consider three software engineering-specific datasets comprised of software require-
ments extracted from different SRS documents. We define different sets of software-specific
entities in these datasets, and implement a BIO tagging scheme where “B” indicates the
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first word of an entity, “I” indicates words inside of an entity , and “O” indicates non-entity
words (see Figure 1). Below, we briefly describe the datasets used in our analysis.

• DOORS : Dynamic Object Oriented Requirements System (DOORS) is a require-
ment management tool [16]. It aids the process of requirement collection, and man-
aging, verifying and communicating requirements through the process of software
development in real time. Initially, we extracted 5,100 DOORS user stories (shorter
version of the requirements) related to multiple software projects. These require-
ments were subjected to data cleaning and basic pre-processing, which resulted in
3,333 requirements. We employed both human experts with software development
background and rule-based system in IBM Watson Studio1 software to obtain the
complete annotations. DOORS requirements consist of ten software specific entities
where ‘verb’ is the most dominant and ‘API’ is the least frequent entity (see Table 1
and Figure 2b).

• SRE : Software Requirement Entities (SRE) is an extensive dataset that is pre-
pared from five different SRS documents attributed to different industries such as
UAV (Aerospace) [17], OpenCoss (Transportation)2, WorldVista (Medical)3, Mash-
bot (Robotics) [18] and Thermostat (Thermodynamics) [18]. Each one of these SRS
documents contain more than 100 requirements. To create the SRE dataset, we
sampled 378 requirements and converted the compound requirement structures into
simple requirements. The annotation process was accomplished by human experts
using Doccano 4 and IBM Watson Studio1. This dataset consists of six software
specific entities with ‘Property’ being the most frequent and ‘Operator’ being the
least frequent (see Figure 2c). Due to the dominance of hardware related require-
ments, we encountered some mathematical measures (‘3 hours’ or ‘70 Km’) and
operators (‘less than’ or ‘equals to’) in the text. Accordingly, we kept the ‘Metric’
and ‘Operator’ as entities to represent this information. Figure 2a shows that the
longest requirement text length is 67 and shortest is 7.

• RQA: Requirement Quality Assistant (RQA) is one of the inherent functionality
provided by DOORS which improves the quality of software requirements [19]. It
uses the International Council on Systems Engineering (INCOSE) guidelines for
writing the requirements and helps in formulating the good quality requirements
[20]. With the help of the RQA system, users can also assess the quality of require-
ments using NLP-based feature extraction. The RQA system detects 20 software
specific entities which cover both linguistic and morphological aspects of require-
ments. We obtained the corresponding annotations for the requirements present in
SRE dataset and created another software-specific NER dataset, which we refer to
as RQA dataset. Figure 2d shows the nine most frequent entities present in this
dataset.

Table 1. Software requirement dataset characteristics

Dataset # of Requirements # of Entities

DOORS 3,333 10
SRE 378 6
RQA 378 20

1https://www.ibm.com/ca-en/cloud/watson-studio
2http://www.opencoss-project.eu
3http://coest.org/datasets
4https://github.com/doccano/doccano
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(d) Entity distribution for RQA

Figure 2. Exploratory data analysis on software requirement datasets

3.2. Named entity recognition models

BERT models are shown to achieve state-of-the-art performance for the domain spe-
cific NER tasks, and it is very convenient to fine-tune these models for downstream tasks.
As such, we employ BERT variants, namely, BERT (cased and uncased), RoBERTa and
ALBERT, along with the baseline ML-CRF model for our NER task.

• ML-CRF : Machine Learning-based Conditional Random Fields (ML-CRF) be-
longs to the class of statistical models that use a probabilistic approach to assign
the entity tags for each token present in the input text. Previous studies showed that
ML-CRF can be highly effective for domain specific NER tasks as it can take advan-
tage of data-specific handcrafted features that capture the contextual information
in the input text [9–11, 21]. For our analysis, we prepared a comprehensive list of
handcrafted features which includes orthographic (capitalization and alphanumeric),
lexical (tokens), contextual (tokens in window size [-1,1]), and word bitstring (digits
and alphabets). This feature set is inputted to the CRF learning model which esti-
mates the conditional probability of selecting appropriate software specific entities
given the input as a requirement text (see Figure 1).

• BERT: BERT is a language representation model which stands for Bidirectional
Encoder Representations from Transformers [2]. It is pre-trained on a large corpus
of data using masked language modeling. We used both BERT-large-cased and
BERT-large-uncased versions in our analysis. The main difference in the uncased
version is that the text has been transformed into lower case before the process of
tokenization, whereas the cased version performs the training process with raw text.

• RoBERTa: RoBERTa is a robustly optimized version of BERT. It uses the BERT-
large variant as an underlying structure. The modifications over vanilla BERT
includes training the model longer with large batches, removing the next sentence
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prediction objective, training on larger sequences, and dynamically changing the
masking pattern in modeling [3].

• ALBERT: ALBERT is the lite variant of BERT [4]. It simplifies the BERT archi-
tecture by reducing the number of parameters to optimize the memory efficiency.
Specifically, the ALBERT model changed the token embedding layer units from
768 to 128 which lead to an increase in training speed. In our analysis, we used
ALBERT-base-V2 checkpoint.

3.3. Few-shot learning

Few-shot learning refers to making classification based on a small number of data in-
stances. One of the leading methods for few-shot is prompt-based learning, which has
become a new paradigm in the NLP field due to its simplicity. This approach involves refor-
mulating downstream tasks as Masked Language Model (MLM) of a pre-trained language
model, showing great effectiveness for various NLP tasks. For instance, a NER task can
be formulated as “John went to Paris. Paris is a kind of [MASK].”. When this instance is
passed to MLM, the output is likely to produce city, place or town. Accordingly, we con-
verted the software requirement texts into input sentences and candidate statements. For
instance “UAV shall charge in 3 hours” can be represented in the form of candidate labels
as ‘UAV is a type of actor ’, ‘charge is a type of action’, and ‘3 hours is a type of metric’.
We trained the template-based BART model [5] with transformed version of the software
requirement datasets. The input of the text-to-text (BART) model can be perceived as
software requirements, and output is the candidate statements which represents the named
entity labels.

3.4. Experimental setup

In a named entity extraction task, the main aim is to identify the correct tag for each
token present in the input text. We employed different BERT variants for this task and
instantiated pre-trained transformer models (i.e., BERT-large-uncased, BERT-large-cased,
and RoBERTa-large). We fine-tuned the architectures for the NER task by using the Auto-
ModelForTokenClassification class in the “simpletransformers.classification” library, which
is based on the transformers library by HuggingFace 5.

The “Simple Transformers” library provides a convenient way of training and evaluating
the transformer models. The process of fine-tuning the transformer models is typically time
consuming. However, this can be mitigated by altering the length of the input text, which
is the maximum length of tokens that appear in the model corpus. We used 100 as the
default value for the max_seq_length parameter since the requirement length ranges from
(7 to 70) in all the datasets. Because the number of annotated requirements is limited in
all three datasets, we employed 3-fold cross validation to evaluate the performance of the
NER models.

Table 2 shows the hyperparameter values used in training the NER models. We trained
the ML-CRF model using CRFsuite library 6 and performed hyperparameter tuning using
the grid search cross validation technique. In Table 2, ‘C1’ and ‘C2’ correspond to L1 and L2
regularization, respectively. We used ‘lbfgs’, i.e., limited memory-BFGS as the optimization
algorithm, and trained the algorithm for 100 iterations.

Similarly, we experimented with different hyperparameters for the transformer models to
identify the ideal parameter set. Table 2 shows the values of fine-tuned parameters for each
BERT variant. For hyperparameter tuning experiments, we set up different combinations

5https://huggingface.co/transformers/model_doc/bert.html
6https://sklearn-crfsuite.readthedocs.io/en/latest/
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of learning rate (1e-05 to 5e-05), training epochs (2,5), train batches (8,32) and dropout
value (0.1). We found that transformer models achieve better performance with smaller
training batches and converge within a few epochs. We measured the average training time
for all the requirement datasets, and found ML-CRF to be the fastest NER model with an
average training time of 21 seconds. Average training times for the transformer models are
as follows: 9.12 minutes for BERT-large-cased, 9.43 minutes for RoBERTa-large, and 2.9
minutes for ALBERT-base-v2.

Table 2. Model configurations and hyperparameters for all the models

Models Hyperparameters

ML-CRF algorithm : ‘lbfgs’,c1 : 0.1, c2 : 0.1, max_iterations : 100

BERT-large-uncased num_hidden_layers : 16 hidden_size : 1024, max_seq_length : 100,
epoch : 5, drop_out : 0.1, learning_rate : 5e-05,batch_size : 8

BERT-large-cased num_hidden_layers : 16, hidden_size :1024, max_seq_length : 100,
epoch : 5, drop_out : 0.1, learning_rate : 5e-5,batch_size : 8

RoBERTa-large num_hidden_layers : 16, hidden_size : 1024, max_seq_length : 100,
epoch : 3, drop_out : 0.1, learning_rate : 5e-04,batch_size : 8

ALBERT-base-v2 Repeating_layers : 12, hidden_size : 768, max_seq_length : 100,
epoch : 5, drop_out : 0.1, learning_rate : 2e-5, batch_size : 8

4. Results

In this section, we first compare five NER models over three software requirement datasets
(DOORS, RQA and SRE) using the standard NER performance metrics, namely, weighted
versions of precision, recall, F1-score, and accuracy. The weighted-averaged F1-score is
measured by taking the mean of all individual entity F1-scores weighted by their support,
where support refers to the number of true instances for each entity. We next present an
entity level error analysis to investigate underlying causes and remedies to improve NER
performance. Lastly, we provide few-shot learning results using DOORS, which is our largest
dataset.

4.1. Entity extraction performance

Table 3 shows the comparison of transformer models with the baseline ML-CRF model.
The reported values represent the metrics in percentages accompanied with standard de-
viation over 3 folds of data. Previous studies show that transformer models achieve state-
of-the-art performance for various domain specific NER tasks, given sufficient number of
instances and fine-tuning of the model parameters [6, 22]. We observe a similar trend in
our results as well. We find that the BERT-large-cased version consistently outperforms the
ML-CRF model for DOORS and SRE dataset with F1-score of 92.6% and 77.3% respec-
tively. That is, we manage to improve the F1-score and accuracy by 4% and 5% for DOORS
and SRE dataset with the BERT-large-cased model. We note that, in software requirement
texts, capitalization and abbreviations play an important role, which helps explaining the
better performance of the ‘cased’ BERT version compared to other transformer models.

ML-CRF achieves the best performance for the RQA dataset, with an F1-score of 73.4%.
With fewer input instances and larger entity sets available in this dataset, BERT models are
not able to achieve the expected performance. For some of the entities in the RQA dataset,
we observe minor support values in the training set which make it difficult for the BERT
models to identify the required patterns for the entities.
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Table 3. Entity extraction performance values for the NER models.

DOORS

Models Acc(%) P(%) R(%) F1(%)

ML-CRF 92.9 ± 0.00 88.0 ± 0.00 89.6 ± 0.00 88.7 ± 0.00
BERT-large-cased 95.8 ± 0.00 91.3 ± 0.01 94.3 ± 0.00 92.6 ± 0.00
BERT-large-uncased 95.2 ± 0.00 89.3 ± 0.00 94.0 ± 0.00 91.3 ± 0.00
RoBERTa-large 95.3 ± 0.00 90.0 ± 0.01 94.0 ± 0.00 92.0 ± 0.00
ALBERT-base-v2 94.9 ± 0.00 89.6 ± 0.02 92.6 ± 0.00 91.0 ± 0.01

SRE

Models Acc(%) P(%) R(%) F1(%)

ML-CRF 84.2 ± 0.00 75.4 ± 0.03 69.8 ± 0.00 72.3 ± 0.01
BERT-large-cased 89.1 ± 0.04 74.3 ± 0.07 81.3 ± 0.07 77.3 ± 0.07
BERT-large-uncased 88.4 ± 0.03 71.0 ± 0.07 81.3 ± 0.05 75.6 ± 0.06
RoBERTa-large 86.5 ± 0.02 68.6 ± 0.04 77.0 ± 0.04 72.3 ± 0.05
ALBERT-base-v2 88.1 ± 0.03 74.0 ± 0.06 77.0 ± 0.06 75.3 ± 0.06

RQA

Models Acc(%) P(%) R(%) F1(%)

ML-CRF 91.0 ± 0.00 81.5 ± 0.02 69.0 ± 0.00 73.4 ± 0.00
BERT-large-cased 90.6 ± 0.00 62.0 ± 0.01 67.6 ± 0.03 64.6 ± 0.04
BERT-large-uncased 90.2 ± 0.00 61.6 ± 0.06 65.0 ± 0.01 61.6 ± 0.03
RoBERTa-large 89.6 ± 0.00 53.3 ± 0.03 63.3 ± 0.03 58.0 ± 0.02
ALBERT-base-v2 91.0 ± 0.01 73.3 ± 0.02 70.0 ± 0.04 69.3 ± 0.04

Table 4 shows the entity specific evaluation with the best performing model for each
dataset. BERT-large-cased model performs well for DOORS over all the entities except ‘Lan-
guage’ entity, as we have very few instances for this category in the training set. It achieves
very high F1-scores for entities such as ‘User’(97.6%), ‘Verb’(95%), and ‘API’ (95.3%) along
with low standard deviation values.

Table 4. Detailed performance values for individual entities with the best performing
model

Dataset Entities P(%) R(%) F1(%) Support

API 93.3 ± 0.01 97.0 ± 0.00 95.3 ± 0.01 33
Adjective 87.3 ± 0.02 91.3 ± 0.02 89.6 ± 0.02 281
Core 88.6 ± 0.02 93.0 ± 0.00 91.0 ± 0.01 1,237
GUI 83.0 ± 0.02 88.3 ± 0.01 85.6 ± 0.01 592

DOORS Hardware 86.3 ± 0.04 88.3 ± 0.10 87.0 ± 0.07 26
Language 72.6 ± 0.03 59.6 ± 0.15 64.3 ± 0.09 37
Platform 89.3 ± 0.00 92.0 ± 0.01 91.0 ± 0.00 235
Standard 89.3 ± 0.01 93.0 ± 0.01 91.0 ± 0.01 235
User 97.0 ± 0.01 98.0 ± 0.00 97.6 ± 0.00 923
Verb 93.0 ± 0.01 96.6 ± 0.00 95.0 ± 0.00 2607

Action 85.0 ± 0.06 86.6 ± 0.08 86.0 ± 0.06 150
Actor 78.3 ± 0.04 92.6 ± 0.05 85.0 ± 0.04 146

SRE Metric 92.6 ± 0.06 91.6 ± 0.09 92.0 ± 0.07 12
Object 65.6 ± 0.10 64.6 ± 0.09 65.3 ± 0.10 59
Operator 54.6 ± 0.33 29.3 ± 0.20 38.0 ± 0.25 11
Property 64.0 ± 0.11 76.0 ± 0.08 69.6 ± 0.10 218

Action 82.0 ± 0.04 74.0 ± 0.04 78.0 ± 0.03 100
Actor 85.0 ± 0.00 79.0 ± 0.05 81.0 ± 0.02 81
Ambiguity 71.0 ± 0.15 53.0 ± 0.25 59.0 ± 0.19 10
Clause 95.0 ± 0.03 89.0 ± 0.09 92.0 ± 0.04 24
Combinators 61.0 ± 0.28 15.0 ± 0.01 23.0 ± 0.01 6

RQA Design_statements 100.0 ± 0.00 86.0 ± 0.18 91.0 ± 0.11 3
Escape_clause 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 1
Imperative 87.0 ± 0.03 85.0 ± 0.02 86.0 ± 0.01 81
Qualifying_clause 79.0 ± 0.07 60.0 ± 0.02 68.0 ± 0.01 54
Superfluous_infinitive 100.0 ± 0.00 78.0 ± 0.10 87.0 ± 0.06 10
User 71.0 ± 0.01 63.0 ± 0.05 67.0 ± 0.03 12
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With limited amount of available data for SRE and RQA datasets, NER models are
not able to perform well for certain entities. For the SRE data, the BERT-large-cased is
able to perform well for entities ‘Action’, ‘Actor’, and ‘Metric’ with the F1-scores of 86%,
85%, and 92%, respectively. BERT-large-cased provides average performance values with
high standard deviation for ‘Operator’ and ‘Property’ entity. The low performance values
for these entities can be explained by lack of uniformity in requirement structures as the
‘Property’ tag was defined differently in all the SRS documents because of the variety of
writing styles of requirements, and ‘Operator’ tag support was small. As the entity set is very
large for the RQA dataset, we get zero support for some of the entities during evaluation.
Therefore, we only present the best 11 entities out of 20 entities in Table 4. ML-CRF works
better for most entities, irrespective of low support, as it trains over a customised feature
set for each entity.

4.2. Error analysis

A NER task is typically formulated in two steps: first identifying the boundary of tags
(i.e., recognizing the beginning and end of the tag), and then assigning the appropriate entity.
As such, we explore possible cases of errors in NER task both with respect to boundary
matching and entity type matching, and report the error measures on our datasets. Table 5
describes five scenarios of errors, which can happen in model predictions with respect to the
ground truth annotations for sample requirements from the SRE dataset. Case I and III
can be easily evaluated by classic NER metrics. However, for partial entity and boundary
matches, we need different sets of metrics to evaluate the scenarios described in cases II, IV
and V.

Table 5. Sample error cases from the SRE dataset with the predictions from the BERT-
large-cased model [23].

Cases Description Ground truth Prediction

I Surface string and
entity type match

New user will require a username
to create the account.
O, B-Actor, O, B-Action, O, B-Property
O,B-Action, O, B-Property

New user will require a username
to create the account.
O, B-Actor, O, B-Action, O, B-Property
O,B-Action, O, B-Property

II System hypothesized
an entity

UAV shall fully charge in 3 hours.
[B-Actor, O, O, B-Action, O
B-Metric, I-Metric]

UAV shall fully charge in 3 hours.
[B-LOC, O,O, B-Action, O,
B-Metric, I-Metric]

III System misses
an entity

Driver shall control the tame gap
between vehicles.
[B-Actor, O, B-Action, O, B-Property
I-Property, O, B-Object]

Driver shall control the tame gap
between vehicles
[O,O,O, B-Property, I-Property
O, B-Object]

IV System get the
boundary wrong

The Themas System shall note
the temperature.
[O, B-Actor, I-Actor, O, B-Action,
O, B-Property]

The Themas System shall note
the temperature.
[B-Actor, I-Actor, I-Actor, O, B-Action
,O, B-Property]

V System get the boundary
and entity type wrong

The system shall report the temperature
of heating and Cooling units.
[O, B-Actor, O, B-Action, O, B-Property, O
B-Object, I-Object, I-Object, I-Object]

The system shall report the temperature
of heating and Cooling units.
[O, B-Actor, O, B-Action, O, B-Property, O
B-Property, O, I-Property,O]

Message Understanding Conference (MUC) introduced the set of error metrics in an
assessment that can be explained in terms of comparing the predictions of a NER model
against the ground truth[24]:

• Correct (C): entity type and boundary are the same (Case I)
• Incorrect (I): output of a system and the golden standard are not same (Case V)
• Partial (P): system and the golden standard are partially “similar” but not the same (Case

IV)
• Missing (M): entity type is not captured by system (Case III)
• Spurius (S): system produces an entity which is not present in the entity set (Case II)

The Semantic evaluation workshop’13 (SemEval’13) conceptualised four different ways to
measure precision and recall based on the metrics defined by MUC [23]:
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• Strict: exact match for boundary and entity type
• Exact: exact boundary match irrespective of entity type match
• Partial: partial boundary match irrespective of entity type match
• Type: entity type match irrespective of the boundary match

The total number of entities present in the ground truth can be defined as ‘Possible
(POS)’ (POS = C + I + P +M) measure, and total number of system predictions can be
defined as ‘Actual (ACT)’ (ACT = C+I+P +S). For exact and strict type of errors listed
in SemEval[23] we define precision and recall values as Precision = C

ACT and Recall = C
POS ,

and for partial or type match errors as Precision = C+O.5×P
ACT and Recall = C+O.5×P

POS . To
calculate these measures, we consider the best test folds of DOORS, SRE, and RQA having
1253, 126, 126 instances. We extract the system predictions using the best NER model
for each dataset and compare them with ground truth annotations. Table 6 presents the
error values for each dataset in absolute number. The NER models miss 5.0%, 8.1% and
29.4% entities in DOORS, SRE and RQA, respectively. In terms of spurious error, the NER
models assign 8.2%, 19.0% and 10.8% of random entities to tokens present in DOORS, SRE,
and RQA, respectively.

Table 6. ACT (number of entities produced by NER system) and POS (expected number
of entities) values obtained using five different types of error measures as defined by [24].

Dataset #Correct (C) #Incorrect (I) #Partial (P) #Missed (M) #Spurious (S) #Possible (POS) #Actual (ACT)

Type 5968.0 (94.0%) 40.0 (0.6%) 0.0 (0.0%) 320.0 (5.0%) 541.0 (8.2%) 6328.0 6549.0
DOORS Partial 6002.0 (94.8%) 0.0 (0.0%) 6.0(0.09%) 320.0 (5.0%) 541.0 (8.2%) 6328.0 6549.0

Strict 5964.0 (94.2%) 44.0 (0.7%) 0.0 (0.0%) 320.0 (5.0%) 541.0 (8.2%) 6328.0 6549.0
Exact 6002.0 (94.8%) 6.0 (0.09%) 0.0 (0.0%) 320.0 (5.0%) 541.0 (8.2%) 6328.0 6549.0

Type 531.0 (88.2%) 22.0 (3.6%) 0.0 (0.0%) 49.0 (8.1%) 129.0 (19.0%) 602.0 682.0
SRE Partial 536.0 (89.0%) 0.0 (0.0%) 17.0 (2.8%) 49.0 (8.1%) 129.0 (19.0%) 602.0 682.0

Strict 516.0 (85.7%) 37.0 (6.1%) 0.0 (0.0%) 49.0 (8.1%) 129.0 (19.0%) 602.0 682.0
Exact 536.0 (89.0%) 17.0 (2.8%) 0.0 (0.0%) 49.0 (8.1%) 129.0 (19.0%) 602.0 682.0

Type 312.0 (68.5%) 9.0 (1.9%) 0.0 (0.0%) 134.0 (29.4%) 39.0 (10.8%) 455.0 360.0
RQA Partial 321.0 (70.5%) 0.0 (0.0%) 0.0 (0.0%) 134.0 (29.4%) 39.0 (10.8%) 455.0 360.0

Strict 312.0 (68.5%) 9.0 (1.9%) 0.0 (0.0%) 134.0 (29.4%) 39.0 (10.8%) 455.0 360.0
Exact 321.0 (70.5%) 0.0 (0.0%) 0.0 (0.0%) 134.0 (29.4%) 39.0 (10.8%) 455.0 360.0

Figure 3 shows the precision and recall values for each error category for all the datasets.
For DOORS data, we observe similar precision (91%) and recall (94%) values, however,
for SRE dataset we get higher values of recall across all the error categories ranging from
(88% to 90%), with precision values ranging from (77% to 79%). Because the RQA dataset
contains a large entity set and limited number of data instances, we obtain lower recall
values (68% to 70%) in all the error categories.
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MUC Metrics
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Figure 3. Precision and recall values obtained after evaluating the error categories [23].

4.3. Few-shot learning results

It is usually difficult to obtain labeled textual data in software engineering domain. Ac-
cordingly, it is important to test out the capabilities of the NLP models with limited amount
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of available data. We used the BART-based approach [5] as the backbone in few-shot train-
ing, and compare its performance against vanilla BERT fine-tuning. Respectively, 4% ,8%,
16%, 32%, 64% and 100% of the entire DOORS dataset used in a log-scale mode. Figure 4
demonstrates that the few-shot text-to-text model can provide relatively good performance
with a small number of labeled data instances. That is, few-shot learning is substantially
more sample efficient than vanilla BERT Fine-tuning. Even at only 16% of the original
training set, the model achieves 82.5% accuracy value, which outperforms BERT (78.7%)
significantly. On the other hand, BERT outperforms few-shot learning when all the available
data is used for training. Furthermore, the time complexity of the Template-NER model
used for few-shot learning is very high. The model enumerates all possible text spans in the
original input sentence as named entity candidates during inference. Afterward, it classifies
the candidates into named entities or non-entities based on model scores. Enumerating all
possible text inevitably increases time complexity.
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Training Sample (%)

0.65

0.70
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Fine Tuning BERT
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Figure 4. Few-shot and vanilla BERT accuracy as a function of training set size

5. Conclusions

In this study, we demonstrated the efficiency of transformers models for the extraction
of software-specific entities using three requirement datasets (DOORS, SRE, and RQA).
We employed four different BERT variants, and compared them with the baseline ML-CRF
model. In addition to standard NER metrics, we provided entity level error analysis to
examine the error cases in NER model predictions.

In general, BERT consistently provided the best performance for DOORS and SRE
dataset, and ML-CRF performed the best for the RQA dataset. Error analysis showed
that the BERT model performed well for DOORS data as it only missed a small percentage
of the entities, and detected the boundary and entity types in partial and exact matching
with high precision and recall. We also evaluated a few-shot NER model on the DOORS
dataset, which was found to be a sample efficient technique, achieving better performance
for small training sets.

Overall, fine-tuned transformer-based NER models showed promise to improve the pro-
cess of software-specific entity extraction in generic SRS documents. These NER models
can also benefit other downstream NLP tasks in the requirement engineering domain such
as requirement classification, ambiguity and conflict detection in software requirements, and
requirement quality assessment, which we aim to investigate as a future work. We also plan
to explore other advanced few-shot learning methodologies, which provide opportunities to
work with other software requirement datasets that have few labeled instances. Lastly, data
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augmentation techniques can be employed to improve the support for minority entities in
our datasets, and can help enhance overall NER performance.
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