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Our second tutorial on inferential statistics focuses on simple linear (regression) models, obtained via 

the linear least square method. Below you will see a comparison between a probabilistic model and a 

linear model. Different to a probabilistic model, a linear model does not consist of probability values 

ranging from 0 to 1, but of values of scaled measurements.  

 

In other words: different to a conditional probabilistic relation between a hypothesis and data, a 

linear model consists of the conditional linear relation between variables ─ the relation between an 

independent (x-axis) and a dependent variable (y-axis). The model is therefore literally the linear 

function above that was thoughtfully drawn through some data points.  

The goal of a linear model is to thoughtfully make predictions of (new) data. As we see on the right 

graph above the data points are not all directly located on our model (the linear function in the 

graph). However, they appear to be at least rather close to the model estimation (the line in the 

graph), as we can see that our model follows the linear tendency of the data quite well. The 

(“vertical”) deviation between the actual data and our model estimate is called error or residual.  

Below you will find a graph with some random data points and the evaluated residual value (see full 

tutorial for R code of the graph). The formula for evaluating the residual is: 𝑦 − 𝑓(𝑥)  =  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙. 

Outspoken the formula states: the residual / error is equivalent to the data value of the dependent 

variable minus the estimated model value of that dependent variable. The residual tells us how far of 

our model is from the actual data point. Note that both the data value 𝑦 and the model estimate 

𝑓(𝑥) refer to the same value of 𝑥. In other words: The residual difference only refers to “vertical” 

𝑦 − 𝑎𝑥𝑖𝑠 so to speak (there are other methods as well, which we will not go into here).   



 

 

The goal is to find a model that makes the least errors in general, i.e., in account of all given data 

points (the least sum of alle errors of a possible linear model).  

Deciding for a linear model that fits well to the given data is in general cast as “optimization 

problem”. One of the simples being the linear least square method. As a solution for our 

optimization problem, it will help us make a transparent and reflected decision on where to optimally 

draw our line through the data. In other words: it tells us the optimal parameters for 𝑎 and 𝑏 of our 

function 𝑓(𝑥) = 𝑎 + 𝑏𝑥.  

So, intuitively finding a linear model is actually really simple and intuitive: it is literally just about 
drawing a line into a graph with data points in a way that our linear model doesn´t deviate too much 
from the actual data points, when the data points are seen as a whole of some kind (the sum or 
errors ─ we will get to that). Try yourself. Draw an optimal line through the given data points: 

 

 



Dependencies of Variables 

Again: Instead of a relation between 𝑡ℎ𝑒𝑡𝑎 and 𝑑𝑎𝑡𝑎, a linear model consists of a (conditional linear) 

relation between an independent and dependent variable. In other words: a linear model consists of 

estimated measurement values, such as the amount of tea drank (dependent variable) in a certain 

amount of time (independent variable).  

Evaluating the p(robability)-value, i.e., the significance of a linear model, will be done in part three of 

our tutorial series on inferential statistics and involves a t-test et cetera. In general, evaluating a 

linear model involves a method to look at a linear model from a probabilistic perspective, where 

𝑡ℎ𝑒𝑡𝑎 means in nuce: there is a linear relation that predicts the (new) data well enough (alternative 

hypothesis).  

Independent variable (𝒙): An independent variable is a variable that is not influenced by any other 

variable, but can influence another variable (the dependent variable). The independent variable is 

often “time”, which is usually not influenced by other variables. Exceptions can be found in physics 

(relativity of time and space in relation to mass of an object), or in linguistics, e.g., when measuring 

the time needed to read an item (e.g., a small text). Changing the item may result in a change in the 

time needed to read the particular item. However, the item is not changing just because time passes 

(the text remains the same throughout time). Time is in this case the dependent variable, dependent 

on the particular text item. 

Dependent variable (𝒇(𝒙)): A dependent variable is therefore a variable that is influenced by 

another variable, but does not change other variables ─ it is dependent on other (independent) 

variables. Another example for a dependent variable could look like this: An experimental setting is 

supposed to clarify if the mood of a dog changes when served different kinds of dog food. The dog 

food is considered the independent variable, which is not influenced by the dog, but is supposed to 

influences the dog’s mood. The dog’s mood on the other hand does not change which kind of dog 

food is served, as we decide which food is served and then check if there is a differentiable relation 

to the dog’s mood. The dog’s mood therefore represents the dependent variable ─ dependent on the 

dog food so to speak.   

Handling the concept of the characteristic dependency of variables can be tricky for several 

reasons. We evaluated some of them in our full text tutorial and tried to establish algorithmic 

approaches for understanding and evaluating the dependencies of variables (e.g., in a paper).  



 

Above you see several general graphical relations between variables, including confounder and by 

proxy effects. See full tutorial for more details (not essential for understanding the linear least 

squares method below).  

 

Recap Linear Functions:  

Below you can see an idealized linear function with a slope 𝛽 = 1 and a point where the linear 

function crosses the 𝑦 − 𝑎𝑥𝑖𝑠 at 𝑃𝛼(𝑦 = 0|𝑥 = 0).  

Formally our function is written as 𝑓(𝑥) = 1 ∗ 𝑥 = 𝑥. The point where the function crosses the y-axis 

can be evaluated by setting 𝑥 within 𝑓(𝑥) = 𝛼 + 𝛽 ∗ 𝑥 to zero and adding the value of 𝛽, such that 

0 = 𝛼 + 1 ∗ 0, resulting in: 0 = 𝛼.   

 



The graph above importantly indicates that a change in 𝛽 does not indicate an indirect change of the 

value of 𝛼. Think of 𝛼 more as an axis point on which our linear function rotates on when 𝛽 is 

changed. 

We can now reformulate our goal of drawing an optimal line by saying: We are looking for a 

particular 𝛼 and 𝛽 in a function 𝑓(𝑥) = 𝛼 + 𝛽 ∗ 𝑥 that fits best to the given data points, i.e., which 

leads to the least “amount” of errors when making a prediction on (new) data. 

In other words: the optimization we are about to perform concerns minimizing an error: We want to 

find the best model function amongst all possible model functions, where best is defined as an 

attribute of a function that makes a minimum of errors when doing predictions (on given or new 

data).  

But why is it called the linear leas squares method? You may recall from school that particular 

“pond like” parabola functions can have a minimum and “mountain like” parabola functions can have 

a maximum. Comparing our goal of minimizing errors to the concept of a regular linear function, you 

might already anticipate that finding the minimum of a linear function does not seem to work, as it 

would lead to a residual value approaching minus infinity. In order to overcome such relational 

boundaries, we are going to square the errors, which turns our linear problem of finding a particular 

𝛼 and 𝛽 in a function 𝑓(𝑥) = 𝛼 + 𝛽 ∗ 𝑥 into a quadratic problem: finding a particular 𝛼 and 𝛽 that 

leads to the least or minimum of the sum of squared errors (∑= sigma = sum sign; 𝑟 = residual):  

 

We are not going to use a parabola function to solve our new quadratic problem, but a partial 

differential equation (PDE) to do so. However, most of the mathematical steps of solving a PDE are 

equivalent to finding the minimum in a simple parabola function, so we will do short recap on this 

type of functions as well.  

 

Recap Parabola Functions:  

In a parabola function 𝑔(𝑥)  =  𝑥2 the minimum/maximum value of a function 𝑔(𝑥) can be 
obtained by taking the first derivative, then setting it to zero, subsequently solving the 
equation for 𝑥𝑚𝑖𝑛/𝑚𝑎𝑥. We can then obtain the corresponding value of 𝑦 of that 𝑥𝑚𝑖𝑛/𝑚𝑎𝑥 

via plugging in 𝑥𝑚𝑖𝑛/𝑚𝑎𝑥 into 𝑔(𝑥): 



 

Above we see the parabola function 𝑔(𝑥) =  𝑥2 + 𝑥 + 2.  

The first derivative is the linear function 𝑔′(𝑥) =  2 ∗ 𝑥 + 1, which we also see in the graph. Above 

we can see that when setting 𝑔’(𝑥), i.e., the y-coordinate to zero, we will obtain the value of 𝑥 where 

that linear derivative function will cross with the x-axis. The important part is that the derivative 

function crosses the x-axis right at the minimum value of 𝑔(𝑥), i.e., the minimum y-coordinate value 

of the function.    

We then precede and plug in that particular 𝑥𝑚𝑖𝑛 into our parabola function 𝑔(𝑥), which will 

subsequently give us the respective y-coordinate of the minimum of the above parabola function 

𝑔(𝑥).  

The Linear Least Square Method in Detail: 

In order to find a particular 𝛼 and 𝛽 that leads to the least sum of squared errors, we will operate 

with a function that contains two variables ─ 𝛼 and 𝛽 ─ instead of just one variable 𝑥. The rest of the 

process is the same: we will take the derivate of our PDE, set it to zero and will then solve the 

equations. That’s right: equations. Taking the derivative of a partial differential equation will leave us 

with two equations, instead of one when setting the derivative of a parabola function to zero in 

order to evaluate its minimum.  

Before taking the derivative, let us first look at our PDE in full, which essentially is just our residual 

/ error formula squared and summed (∑= sigma = sum sign). Again: We need to sum the errors, as 

we are not only looking at the error of one data point in relation to our model, but all of them.   

 



Our PDE in the current form above is an error function 𝐸 with respect to two variables, a and b 
(which is the same as 𝛼 and 𝛽), which correspond to the given data values 𝑥𝑖 and 𝑦𝑖, all together 
resulting in a value of the squared error (not its minimum yet!!). 

Below you will find the two partial derivatives of our PDE. The fractions below are spoken “partial 

derivative of 𝐸(𝑎; 𝑏), regarding 𝑎 or 𝑏, i.e., in respect of either 𝑎 or 𝑏”, which just means that either 

𝑎 or 𝑏 is set constant (does not change; no difference), when the partial derivative with respect to 

either 𝑎 or 𝑏 is evaluated. 

 

As we know, the next step involves setting the above equations to zero. From there the goal is to 

rearrange the equations to form a system of equations, in order to solve for 𝑎 and 𝑏, e.g., via 

substitution methods. We thoroughly go through each step in our full tutorial. Here we are going to 

jump ahead a few steps, such that our system of equations will look like this: 

 

It is important to recall that 𝑥 and 𝑦 are values that are given to us. So, the above system of 

equations entails two equations that can be though of as looking something like 𝑎 + 𝑏 = 0 and the 

other equation 2 ∗ 𝑎 + 3𝑏 = 5. Solving a system of equations via substitution means that we can 

use the first equation, rearrange it as 𝑎 = −𝑏, plug it into the 𝑎 of the second equation and are then 

able to solve for 𝑏 (subsequently doing the same for 𝑎).  

The above system of equations of our linear model is a generalization and can now be used for any 

values of 𝒙 and 𝒚. In R the system of equations would formally look like this:   

 

In the third part of our tutorial series, we will also introduce alternative methods to obtain the 

optimal 𝑎 and 𝑏 for 𝑓(𝑥) = 𝑎 + 𝑏𝑥, e.g., via covariance and variance. The way we introduce it in our 

full tutorial relates especially well to those with a minimum background in mathematics, having at 

least a basic visual idea what a linear and parabola function is, in order to build up the rest of the 

knowledge needed to perform linear modelling from there.  



Replicating the Math in R 

In our full text tutorial we replicated the complete mathematics of the built in lm() function in R. 

Our function will also automatically plot the results.  

Here is the code that at least works for basic linear models in the same way as the function lm() 

does. Below the solve() function was used in order to solve the system of equations (via 

substitution). It also entails the use of the cat() function to produce nice looking output. 

# Go-go-gadgeto linear_least_square!!!! 

# Replication of the lm() function: 

 

linear_least_square = function (x,y){ # Start of function 

    # "Guess function" 

    lmRandom = function(x) (x) 

 

    # Setting up system of equations: 

    left_a_r1c1 = sum(a*length(x)); left_b_r1c2 = b*sum(x)  

    left_a_r2c1 = a*sum(x)        ; left_b_r2c2 = b*sum(x^2) 

    right_r1c1 = sum(y) 

    right_r2c1 = sum(x*y) 

 

    # Now we will set up the above as matrix (left) and 

    # vector (right) objects: 

    left = matrix(c(left_a_r1c1 , left_b_r1c2, 

                    left_a_r2c1 , left_b_r2c2), 

                           ncol=2, nrow=2, byrow = TRUE) 

    right = c(right_r1c1, right_r2c1) 

 

    # Now we can solve our system of equations via: 

    Result = solve(left,right) 

 

    # Fitted function: 

    lmFitted = function(x) (Result[1]+Result[2]*x) 

    SumError2fitted = sum((y-lmFitted(x))^2) 

 

    # Code for nice console output 

    cat(" Linear least square method in R","\n","\n", 

    "Independent variable:", "\t", deparse(substitute(x)),"\n", 

    "Dependent variable:", "\t", deparse(substitute(y)),"\n","\n", 

    "alpha", "\t",Result[1],"\n", 

    "beta","\t",Result[2], "\t","SumR2", "\t", SumError2fitted) 

 

    # Plot Results: 

    plot(x=x,y=y, ylab = deparse(substitute(y)), 

                  xlab = deparse(substitute(x))) 

    abline(a=Result[1], b=Result[2], col = "darkblue") 

} # End of function 

 

Below you find the synthetic data set used for the above graphs of a linear model: 

# Cups of Tea = Dependent Variable 

cups = c(0, 1, 2, 3.5, 4.8, 5.2, 6, 6.9, 8.5, 9.1, 9.9, 

         0, .6, 2.6, 3.1, 4.8, 6.9, 7.1, 7.5, 8.5, 9.9, 9.9, 

         0, .2, 2.9, 2.9, 4.9, 5.2, 6.9, 7.1, 7.3, 9, 9.8) 

 

# Time passed for each run of measurements (cups), abbreviated: 

#             = Independent Variable  

time = c(0:10,0:10,0:10) 



 

Execute the above code of the function and subsequently use it on the above synthetic data set in 

order to replicate the respective graphs above: 

linear_least_square(time, cups) 

 

 


