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Abstract

Proper calibration of deep-learning models is critical for many high-stakes problems.
In this paper, we show that existing calibration metrics fail to pay attention to miscali-
bration on individual classes, hence overlooking minority classes and causing significant
issues on imbalanced classification problems. Using a COVID-19 hate-speech dataset,
we first discover that in imbalanced datasets, miscalibration error on an individual class
varies greatly, and error on minority classes can be magnitude times worse than what
is suggested by the overall calibration performance. To address this issue, we propose a
new metric based on expected miscalibration error, named as Contraharmonic Expected
Calibration Error (CECE), which punishes severe miscalibration on individual classes.
We further devise a novel variant of temperature scaling for imbalanced data to improve
class-wise miscalibration, which re-weights the loss function by the inverse class count
to tune the scaling parameter to reduce worst-case minority calibration error. Our case
study on a benchmarking COVID-19 hate speech task shows the effectiveness of our
calibration metric and our temperature scaling strategy.
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1. Introduction

Calibration aims to gauge and improve a model’s ability to provide reliable confidence
scores when making predictions, which is critical for many high-stakes problems that have
significant impact in social, economic, and health applications, among others. In the past
decade, deep neural networks have been shown to achieve impressive prediction performance
on a wide variety of problems. To better assess the degree of miscalibration in neural net-
works [1, 2], there has recently been a surge of interest in improving the calibration metrics.
The most widely used metrics include ECE [3, 4] and its variants [2, 5]. Nevertheless,
these calibration metrics fail to pay attention to miscalibration on individual classes, hence
overlooking minority classes that we really care about and causing significant issues on
imbalanced classification problems.

To address this challenge we propose a new metric based on expected miscalibration
error, named as Contraharmonic Expected Calibration Error (CECE), which punishes se-
vere miscalibration on individual classes. We further devise a novel variant of temperature
scaling for imbalanced data to improve class-wise miscalibration, which re-weights the loss
function by the inverse class count to tune the scaling parameter to reduce worst-case mi-
nority calibration error. We empirically demonstrate the effectiveness of our metrics and
temperature scaling variant using a benchmarking hate speech classification task.

We setup our study on the COVID-19 hate-speech detection task, motivated by the fol-
lowing reasons. First, online hate speech, including that associated with COVID-19 [6],
has significant social impact, e.g., amplifying hate crimes happening in our already stressful
society during the pandemic [7], making it paramount to find means to address this dis-
crimination and violence. Calibration is critical and challenging here because hate speech
is hard to detect as it does not contain discriminative features [8, 9]. Before banning a user
or removing a post flagged under hate speech, it is desirable that the classifier can tell if it
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Figure 1. Plotted confidence versus accuracy for the COVID-19 hate speech dataset is
shown for both a BERT model with no calibration methods (a), and with temperature
scaling applied to the same model (b). The data was sorted into 15 bins based on
confidence and the average accuracy in each bin was calculated. The plots are shown
for the overall test set. The ideal calibration curve can be seen with the diagonal line,
representing perfect calibration as a comparison. (Refer to Section 3.1 for more details
of calibration metrics.)

Figure 2. Continuation of Figure 1. Confidence versus accuracy plots on the 4 subsets of
the test set from each class consisting of only data from that one class can be seen. The
top row is for the uncalibrated model, and the bottom row shows the temperature scaling
results. From visual inspection, it is clear that for both the calibrated and uncalibrated
baselines, the bar plots for some of the classes appear to deviate significantly more from
the ideal line than when all of the classes are considered at the same time in Figure 1,
and the deviation is particularly severe for the classes with the fewest number of samples
such as the criticism and discussion (the two right columns).

is unsure on a difficult example so that it can forward it to a downstream decision from a
human moderator.

Second, hate speech detection is known to suffer from the imbalance problem due to the
relative rarity of hate speech when collecting data from websites like Twitter [10]. Class
imbalance occurs when there is a skew in the distribution of class data, leading to there
being minority classes with far fewer samples than those of the majority. It is imperative
that as people spend more time on social media, online spaces become free from abuse [11].
Models trained on imbalanced data tend to prioritize majority class performance at the
detriment of the minority classes [12], leading to poorer accuracy on minority classes and as
we note, poor calibration as well. Figure 1 and Figure 2 visually demonstrate this issue of
there being prominently more calibration error on individual classes (Figure 2) compared to
the whole (Figure 1) on detecting online hate speech specifically. However, it is the minority
class containing hate that we want to be calibrated the most and that we are most unsure
about; making a mistake on them can lead to grave consequences.

In addition, pre-trained language models like BERT [13] and RoBERTa [14] have achieved
superior classification accuracy on many language processing tasks [15, 16]. These large
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pre-trained models, however, are prone to produce overconfident predictions, thus resulting
in high miscalibration error [4]; we need better calibration on such models, which have
impact on many downstream tasks. Note that while our study is performed on hate speech
detetction, the proposed metrics and method can be easily adapted to other imbalanced
problems where calibration on minority classes is key.

2. Related Work

Recent research on calibration has been conducted on developing metrics to measure
calibration errors, in addition to developing calibration methods. The most widely used
metric for gauging the calibration of a model in literature is Expected Calibration Error
(ECE) [3, 4]. A great deal of research has been conducted to fix the issues with the standard
calibration metrics like ECE [5]. Nixon et al. [2] introduce a new metric named General
Calibration Error (GCE) which encompasses a space of various binning-based calibration
metrics conditioned on different aspects. ECE is part of the space of functions of GCE, as
are additional new metrics that they develop like Adaptive Calibration Error (ACE) and
Static Calibration Error (SCE). The latter two metrics do not just consider the probability
of the predicted class, but each class probability separately. They also find that calculating
the class conditional calibration error yields a much higher result than that of the standard
top prediction error, which inspires this paper’s examination into individual class calibration
as being key to evaluating the true calibration error. For ACE, they use adaptive binning,
which is a method of binning that ensures an equal number of data points are present
in each bin to eliminate high variance inside some bins with low data. In contrast, ECE
bins data points into equally sized bins. However, whilst the probabilities for all classes are
considered, the performance specifically on data points of only those classes is not considered
in the metrics, meaning there is no means to tell which classes are calibrated worse.

Regarding calibration methods, modern calibration methods generally fall under two
methodologies. In the most popular methodology, a recalibration model trained on valida-
tion data is applied on the predictions of the classifier after it is already trained to increase
the entropy of the predictions while preserving the accuracy. This is preferred most of the
time as it does not require longer training times. Deep ensembles are a technique that have
also been explored as a recalibration method, but research has shown that model averaging
does not necessarily lead to better calibration [17]. The second class of methods modify
the training procedure of the classifier so that the model is trained to be less overconfident.
Usually either the loss function is modified or some form of label smoothing is utilized as
training with soft targets is known to prevent overconfidence [18]. Methods using this ap-
proach include Mixup [19] and related methods like Remix [20]. Remix modifies Mixup so
that the labels are more biased towards minority classes making the model more lenient on
minority samples by making a tighter margin with the majority class, but how it performs
in terms of calibration metrics like ECE is not explored.

A modification of temperature scaling [4], called Attended Temperature Scaling [21] is
of interest. Standard temperature scaling is not robust to small amounts of validation data
nor noisy data. Likewise, it does not perform well when the accuracy is too high or low.
Attended temperature scaling can work better in these conditions by generating additional
data on an individual class level. The effects of this on individual class calibration is not
explored nor do they try to synthesize more minority class samples for imbalanced settings.

Approaches to dealing with multi-class imbalanced data are not very well developed as
relationships between classes are not straightforward and simple sampling strategies may not
have the intended effect creating a trade-off in performance between classes [12]. Neverthe-
less, strategies like oversampling the minority classes [22], undersampling majority classes
[23], loss re-weighting [24–26], and SMOTE [27] are often deployed to alleviate the issues.
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Table 1. Individual class ECEs for each of the 4 classes for the baselines detailed in
Section 4.2 on the COVID-19 hate speech dataset. It should be noted that the error for
each class are usually significantly higher than what is suggested by the overall number.

Models Neutral ECE Criticism ECE Hostility ECE Discussion ECE Overall ECE
Uncalibrated 0.026950 0.388316 0.076012 0.074317 0.027712
TS 0.035463 0.367853 0.097313 0.067996 0.017343
IR 0.054277 0.490876 0.219062 0.117765 0.014545
HB 0.028219 0.475642 0.123105 0.141398 0.031437
VS 0.028219 0.475641 0.121193 0.141398 0.031437
SMOTE 0.017720 0.257550 0.065420 0.137520 0.031960
WTS 0.043935 0.350664 0.116748 0.104876 0.024328

Table 2. Individual class ACEs for each of the 4 classes for the baselines detailed in
Section 4.2 on the COVID-19 hate speech dataset. The trend with the per-class errors
is still present and is often more severe than seen with ECE as the metric.

Models Neutral ACE Criticism ACE Hostility ACE Discussion ACE Overall ACE
Uncalibrated 0.061748 0.347441 0.174086 0.210973 0.022355
TS 0.069531 0.346296 0.187416 0.223486 0.017889
IR 0.086079 0.365669 0.198037 0.240948 0.01512
HB 0.059805 0.362539 0.162407 0.226964 0.017412
VS 0.061930 0.371621 0.166005 0.265200 0.031199
SMOTE 0.060119 0.305535 0.170161 0.220800 0.220800
WTS 0.075495 0.345775 0.195986 0.231392 0.020531

3. Class-Wise Calibration Evaluation

3.1. Calibration and Issues

The goal of calibration is to reduce the error between a classifier’s predicted confidences
and the classifier’s accuracy. That is, a well-calibrated model expects the probability values
it outputs for each of the class labels matches the true predictive probability distribution
of the given data. For example, if the model has to predict the labels for 100 samples and
the model outputs correct predictions on 50% of these samples, then it is expected that the
corresponding probability values it outputs on its predicted classes would be 0.5 on average
when considering each data point, as the model can only be 50% confident that it can guess
the correct answer. This property is of great importance in many high-stakes applications
[28], where knowing when the model is likely to be incorrect or inadequate matters for
making subsequent downstream decisions.

Formally, let there be a set of input data points X = {x1, x2, ..., xN} where N is the size
of the evaluation set, and Y = {y1, y2, ..., yN} is the corresponding true labels. After the
softmax is taken over the logits, the classifier produces a probability distribution P̂ (xn) =
{p̂1, p̂2, ..., p̂K} for each data point xn where the total sum is 1 and there are K number of
classes. The highest probability is taken as the predicted class for that data point Ŷ (xn).
A model is considered calibrated if the following is true for each data point xn in X and for
each class k:

P(Y (xn) = Ŷ (xn) | p̂k(xn) = p) = p. (3.1)

Essentially, this equation is formalizing the notion that if the classifier yields a confidence
p̂k = p, then the probability of the actual data distribution for that label should match that
probability. In most cases only the confidence for the predicted class is used in this notion.
Any deviation between the left equation and right equation is miscalibration. Verifying
Equation 3.1 is intractable as the left hand side is continuous function and would require an
infinite sample size to correctly estimate. Thus, it is usually approximated by binning-based
metrics. Metrics of this type approximate Equation 3.1 by dividing data points by their
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confidences into a series of discrete bins. They then calculate the expectation of the total
error based on the error in each bin. The most popular metric, called Expected Calibration
Error [3], bins data points into M evenly sized bins by the confidence of their predicted
class and calculates the absolute difference between the average accuracy in each bin and
the average confidence score. The errors in each bin are then weighted by the number of
data points in them. The equation for ECE is as follows:

ECE =

M∑
m=1

nm

N
|acc(Bm)− conf(Bm)|, (3.2)

where Bm are the data points in bin m, and nm is the number of data points in bin m.
ECE is sensitive to the number of bins chosen. The greater the number of bins the less the
bias in the estimation is, but the variance increases as there are fewer data points to do the
calculation in some bins [2]. The effect of the number of bins on ECE is documented in
appendix A. ECE is widely used, but has been known to have issues apart from the sensitivity
to the number of bins, including how it only considers the confidence of the predicted class,
not of all the classes, which is significant [5]. A bigger problem, however, is that ECE can
severely the underestimate calibration error if overconfident and underconfident data points
are present in the same bin [2], meaning that the metric when ran on the data as a whole can
be unreliable. This motivated looking at the ECE of each class individually to counteract
this effect to some extent as overconfident classes could not balance out underconfident
classes when they are considered separately.

Hence, we run experiments to examine the calibration error when only looking at data
points of a single class. We divide the dataset X,Y into K subsets where each data point
xn in the subset has the true class label y = k. We then run the ECE algorithm on each of
these subsets by using a consistent number of bins of 15 and analyze the results. In table
1, it can be seen that in the case of four different classes, individual class calibration varies
highly. This applies to every method of re-calibration as well, not just the uncalibrated
baseline. For most of the methods, particularly the post processing based methods, all of
the individual ECEs are higher than that of the test set as a whole. This suggests the
presence of the “balancing out” effect we previously mentioned, where overconfident and
underconfident data points get cancelled out, yielding a misleadingly low number.

It is important to note that the minority classes, in this case the criticism, hostility, and
discussion classes, have a significantly higher ECE than that of the majority neutral class,
and in particular, the criticism class has extremely poor calibration. The classifier is not
able to predict confidences representative of its ability to classify these samples. Despite
this, it has a negligible effect on the overall error due to its scarcity. Some increase in
error is expected because binning less data points leads to more variance in the estimations,
but the class-wise increases here are drastic. This suggests that using the ECE over the
entire data may be misleading, especially for imbalanced classification, where extremely
poor performance on minority classes is masked due to exerting smaller influence and being
balanced out by better performing classes. If we care about how well calibrated the minority
samples are, then we should be examining calibration specifically on them. Furthermore,
it can be observed that the class that performs the most poorly is not the class with the
fewest number of samples. This signals that in multi-class imbalanced settings, we must
consider not just compensating for the low number of samples but the relative difficulty of
the class as well. These effects not only apply to ECE but also to a related metric, Adaptive
Calibration Error (ACE) [29], as can be seen in table 2. This suggests that this is a problem
beyond just a quirk of calculating ECE.

The theoretical causes for this effect likely stem from how the decision boundaries are
learned by imbalanced classifiers. Standard training algorithms assume a balanced distribu-
tion [30], which creates an inductive bias towards the majority class as there are more data



6

points to update model parameters. Rules are learned for the majority class but ignored for
the minority class [31], leading to poor accuracy, especially in the case of a shift in distribu-
tion. The classifier essentially struggles to distinguish between noisy samples and minority
class samples [31], and so is unable to represent the true distribution of the minority class.

This effect of using the overall value to judge classifier calibration in imbalanced settings
is comparable to only using accuracy to evaluate a classifier trained on imbalanced data.
The classifier can achieve high accuracy just by guessing the majority class all of the time.
The classifier has not learned to classify anything, but still performs well according to the
metrics because the majority class overwhelms the minority classes. This problem led to the
creation of new metrics like F1 score, which is the harmonic mean of precision and recall,
to compensate for this effect [12], since it punishes extremely low values. For example a
precision of 1.0 and a recall of 0 would give an F1 score of 0. Similarly here, there is a need
to consider alternative metrics that can punish classifiers outputting calibration errors that
are exceptionally high on individual classes. This motivated our new calibration metric,
which will be discussed in detail next.

3.2. Class-Wise Calibration Metrics

To evaluate class-wise calibration, we propose the new metric, Contraharmonic Expected
Calibration Error (CECE), based on the contraharmonic mean of the individual class subset
ECEs. The contraharmonic mean is a form of mean that is defined as follows for a set of
real numbers C = {c1, c2, ..., cn}:

CM(C) :=
c21 + c22 + ... c2n
c1 + c2 + ... cn

. (3.3)

The contraharmonic mean follows the rules of a mean. It is always non-negative, and is
always at least equal the harmonic mean, and equal to or greater than the arithmetic mean
[32]. The squared terms in the numerator mean that the contraharmonic mean will be more
biased towards high outliers. For example, for a set of numbers A = {0.05, 0.1, 0.6}, the
arithmetic mean is 0.25. The contraharmonic mean is 0.497, which is much closer to the
outlier. As higher calibration error values correspond to worse performance, a mean that
punishes extremely high outliers is desirable.

CECE is defined as follows for a set of K number of ECE values, assuming there is an
ECE value for each subset of data points with true class labels equal to k ∈ K:

CECE =
ECE2

1 + ECE2
2 + ... ECE2

K

ECE1 + ECE2 + ... ECEK
. (3.4)

As an example, assuming the aforementioned set A represents the ECE for 3 different classes,
the CECE would be 0.497, a very high value.

We also introduce other metrics that take the arithmetic and weighted arithmetic mean of
these individual ECEs rather than the contraharmonic mean. We call these metrics Macro
Subset Expected Calibration Error (MSECE) and Weighted Subset Expected Calibration
Error (WSECE) respectively. These metrics give a notion of how well calibrated individual
classes are, without punishing extremely high values. MSECE calculates the arithmetic
mean of the individual class ECEs, treating each class equally irrespective of the number of
samples in each subset:

MSECE =
ECE1 + ECE2 + ... ECEK

K
. (3.5)

MSECE is useful when there is a need to consider the individual class calibration error with
equal weights. For set A the MSECE would be 0.25.
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WSECE calculates the weighted arithmetic mean of the individual class ECEs, and each
term is weighted by the percentage of samples of that class:

WSECE =
n1

N
ECE1 +

n2

N
ECE2 + ...

nK

N
ECEK . (3.6)

WSECE is beneficial if it is desired that calibration error on bigger classes is more important.
Lastly, we introduce ECE variance, which calculates the variance between the individual

ECE values and the ECE when considering the overall set of data:

ECE V ariance =

K∑
i=1

(ECEi − ECEoverall)
2

K
.

(3.7)

A high variance can mean there is more of a “cancelling” effect occurring between classes
leading to underestimated calibration error. Using set A as an example, if the overall ECE
was equal to 0.08, then the ECE variance would be 0.09.

3.3. Novel Temperature Scaling Variant

Most conventional post-calibration methods do not attempt to optimize performance on
minority classes in imbalanced settings. Temperature scaling is among the most popular
approaches, and it tries to find an ideal temperature, T, on the validation data and training
is based on finding T to minimize NLL. However, NLL tends to overfit to majority classes,
therefore temperature scaling may ignore minority class calibration to focus on re-calibrating
majority class samples more. Motivated by the re-weighting technique [24–26], done during
training of classifiers for imbalanced data, the loss function is tuned to give a higher penalty
for minority class samples. Usually the loss is weighted by the inverse class frequency or
similar [33, 34]. We propose a novel method called Weighted Temperature Scaling (WTS),
where we apply temperature scaling as usual but during parameter optimization for T we
weigh the cross entropy loss by a factor of 1− nk

N based on the sample counts of each class in
the validation data. By applying this technique while tuning the temperature in temperature
scaling, we are willing to introduce more calibration error to the majority class if it means
the worst case individual class calibration error is reduced for the minority classes. Re-
weighting performs poorly when classes are extremely imbalanced as it can cause significant
performance downturn in majority classes [35], but nevertheless this method can inspire a
new class of methods that prioritize minority classes.

4. Experimental Studies

4.1. Dataset

The dataset we use is the Detecting East Asian Prejudice on Social Media dataset [6]. The
primary task for this dataset is to detect hostility and prejudice against East Asian entities
like people groups and businesses in the context of the COVID-19 pandemic. The dataset is
not explicitly phrased as being about hate speech, but since it is about detecting animosity
towards a specific group we treat it as a hate speech detection task as it is largely in the same
vein. This dataset contains 4 main classes, a neutral class, a hostility against East Asian
related entities class, a criticism of East Asian related entities class, and a meta-discussions
of East Asian prejudice class which consists of two sub-classes merged together due to lack
of data. The dataset consists of 20,000 tweets with an imbalanced distribution of 67.6% for
the neutral class, 7.2% for the criticism class, 19.5% for the hostility class,and 5.7% for the
discussion class. The motivation for using this dataset is that it is a multi-class imbalanced
dataset in the domain of the high stakes problem of hate speech. Furthermore, some minority
classes, like criticism and hostility, are difficult to distinguish from one another. This creates



8

a great emphasis for classifiers not to output overconfident predictions that do not reflect
the difficulty in classifying these classes. As such the dataset serves well to demonstrate the
issues of imbalanced data calibration.

4.2. Comparison Baselines

The following methods were compared:
• BERT [13]: The uncalibrated baseline model we use is a pre-trained BERTBASE

uncased with one layer for sequence classification. The rest of the models use the
predicted scores from the BERT model excluding SMOTE.

• Temperature Scaling (TS) [4]: A parametric method that finds a temperature T
using the validation data that is used to rescale logits produced by the uncalibrated
model.

• Isotonic Regression (IR) [36]: A non-parametric approach that transforms the un-
calibrated predictions using a piecewise linear function that minimizes the square
loss between the predictions and the targets.

• Histogram Binning (HB) [37]: A non-parametric method where uncalibrated pre-
dictions are separated into bins and predictions in each bin are given the same
confidence score.

• Vector (Platt) Scaling (VS) [4]: A parametric approach that finds two ideal parame-
ters a and b from the validation data that scale the logits of the uncalibrated model.
Vector scaling is an extension of Platt scaling [38] into a multi-class setting.

• Synthetic Minority Oversampling Technique (SMOTE) [27]: An oversampling tech-
nique that generates additional minority class samples to compensate for data imbal-
ance. A BERT model is trained on this augmented data. No additional calibration
methods are used.

• Weighted Temperature Scaling (WTS): TS, but while converging on ideal temper-
ature T, minority classes have a higher weight in determining the value.

4.3. Implementation Details

We use Adam [39] optimizer for all of the experiments and a consistent batch size of 16.
The learning rate is initially set to be 2e-5 and a 1cycle learning rate policy [40] is used to
adjust it during training for regularization purposes. A 80/10/10 train/validation/test split
is used for the COVID hate speech dataset to follow what is originally done in [6]. The
number of bins we use as a parameter to each of the calibration metrics is 15.

4.4. Results and Analysis

We compare the baseline and calibration methods with our new metrics, CECE, MSECE,
WSECE and ECE variance, and a set of existing metrics for comparison. ECE on the test
set is the primary existing metric, and results for ACE, and SCE are included to give
extra insight to see if the new metrics we introduce correlate more with the results of the
class conditioned metrics. It should be noted that the weighted F1 score of the model was
0.83, with the calibration methods not affecting the F1 of the model to a notable extent.
Table 3 reports the results of each baseline on the test set of the COVID-19 hate speech
dataset. We can see that the standard calibration methods like temperature scaling, and
isotonic regression performed the best in terms of ECE, ACE, and SCE and outperformed
the uncalibrated model. Histogram binning had a higher ECE than the uncalibrated model
but in terms of ACE and SCE it is better so it can be assumed to be better calibrated than
the baseline. Vector scaling performed poorly on both an overall and individual class level,
but this method does have a tendency to perform inconsistently.
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We can see that the two techniques attempting to address the data imbalance perform
better. SMOTE is worse in terms of calibration error when considering the overall data
than the baseline. However, it has managed to achieve the best results on an individual
level on all the new metrics in terms of reducing worst case calibration error. As SMOTE is
not designed primarily as a calibration method, our newly introduced weighted temperature
scaling performed the best on CECE and ECE variance out of the other post-calibration
methods. It is also better calibrated than the uncalibrated model on the overall metrics as
well. This demonstrates that it successfully managed to reduce the worst case individual
class calibration error compared to standard temperature scaling. It trades off higher cali-
bration error on the majority classes, but proves that by considering minority classes when
tuning the post-calibration methods we can prioritize reducing minority class error.

Table 3. Overall calibration results for the COVID-19 hate speech dataset. Results for
all of the models detailed in Section 4.2 in terms of the calibration metrics are given.
The results are averaged for 5 random seeds. The two methods addressing the imbalance
perform the best in terms of reducing individual class calibration errors compared to
the traditional calibration methods. WTS is the most balanced between overall and
individual class results.

Metrics Uncalibrated TS IR HB VS SMOTE WTS
ECE 0.0277 0.0173 0.0145 0.0314 0.0314 0.0320 0.0243
ACE 0.0224 0.0179 0.0151 0.0174 0.0312 0.2208 0.0205
SCE 0.0211 0.0193 0.0164 0.0204 0.0308 0.0258 0.0233
Contraharmonic ECE 0.2879 0.2650 0.3467 0.3412 0.3415 0.1879 0.2426
Macro Subset ECE 0.1414 0.1422 0.2205 0.1921 0.1916 0.1196 0.1541
Weighted Subset ECE 0.0651 0.0731 0.1209 0.0851 0.0847 0.0493 0.0835
ECE Variance 0.0336 0.0330 0.0702 0.0545 0.0544 0.0158 0.0305

5. Conclusion and Outlook

We contribute a new finding that existing calibration methods fail to pay attention to
miscalibration on individual classes, and hence they tend to underestimate the degree of
miscalibration on data points belonging to minority classes. To address this issue, we pro-
posed the novel metric CECE, which takes into account the class distribution and punishes
exceedingly high error values. We also formulated a new variant of temperature scaling to
prioritize minority class calibration. Using a benchmarking COVID-19 hate speech task, we
empirically showed the effectiveness of our metric and method.

Although we demonstrate the result using a COVID-19 task, the proposed new metrics
and method are general enough to be applied to other imbalanced problems where calibration
on minority classes is key. We will investigate such potential in our future work. We believe
that our research here will inspire further development of calibration methods that do not
just reduce overall calibration error but improve calibration error in important minority
class samples in particular.
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Appendix A. Effect of Number of Bins

The number of bins and the distribution of data within the bins has an impact on binning-
based metrics, especially ECE. When binning minority classes, a significantly lower number
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Table 4. The effect of varying the number of bins on overall ECE and class-wise ECEs
for an uncalibrated BERT model. Increasing the number of bins increases the calibration
error. This variance in relation to the number of bins is a problem with binning based
metrics.

5 Bins 10 Bins 20 Bins 40 Bins
ECE 0.027198 0.027198 0.029574 0.032202
Contraharmonic ECE 0.290927 0.295202 0.295264 0.293997
Neutral Class ECE 0.021856 0.027598 0.02782 0.032994
Criticism Class ECE 0.370042 0.400979 0.400979 0.400979
Hostility Class ECE 0.038143 0.073228 0.082316 0.084447
Discussion Class ECE 0.049876 0.061111 0.080737 0.099759

of data points than the data as a whole are binned. This essentially simulates increasing
the number of bins as the average number of data points per bin decreases in both cases.
Therefore, we conduct an additional analysis to ascertain the effects on calibration error
when there are a lower number of data points per bin and the results can be seen in table 4.
From it, we observe that increasing the number of bins does increase the error, but that the
effects are hardly severe relative to the many magnitude increases in error seen for minority
classes compared to the overall error. Therefore, the increase in variance in the estimation
due to having bins with a low number of data points is likely not enough to account wholly
for why minority classes have higher calibration errors.

Appendix B. Further Analysis of Minority Class Calibration

Here we provide further analysis with a specific example of how the problem of imbal-
anced data leads to poor calibration of minority classes and why it is crucial we consider
class-wise calibration. The following sentence from the dataset demonstrates this imbal-
ance issue, “@markskrikorian this is not the time to blame the chinese communist party
for covering up the HASHTAG_EASTASIA+VIRUS or xi jinping for exporting HASH-
TAG_EASTASIA+VIRUS it’s time for #HASHTAG .” The corresponding confidence scores
produced by the uncalibrated BERT model are 0.009996, 0.16967, 0.81458, 0.00575 for the
neutral, criticism, hostility, and discussion classes respectively. The predicted label by the
classifier is therefore hostility, likely due to the presence of negative phrases like “blame
the chinese communist party” and “covering up” that correlate to hostility or criticism. In
actuality, this sentence is counter hostility and its true label is that of the discussion class.
Not only is the classifier wrong in this case, but more importantly, it is highly confident
in its wrong decision. The hostility class, which has relatively more samples than the dis-
cussion class, has caused the classifier to be biased towards the hostility label by marking
the presence of these negative phrases as more important to its decision. The classifier has
not managed to learn the properties of the minority class and has effectively ignored the
key part of the sentence that is saying the opposite. In fact, the classifier does not even
consider it possible to be counter hostility. On the other hand, for a neutral class sample
like, “wear the right masks to prevent HASHTAG_EASTASIA+VIRUS” the classifier pre-
dicts neutral correctly with a confidence of 0.99. This might be slightly overconfident but
it is an easy example that we expect will be classified correctly almost every time. Despite
the good calibration on majority classes, it should not overshadow poor performance on
minority classes where completely unrepresentative probabilities are generated. Thus we
need a closer examination of minority class calibration scores to make it so that classifiers
are to achieve any real world value.
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