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Abstract
The last decade has witnessed the rise of a black box society where classification

models that hide the logic of their internal decision processes are widely adopted due
to their high accuracy. In this paper, we propose FEHAN, a modularized Framework
for Explaining HiErarchical Attention Network trained to classify text data. Given
a document, FEHAN extracts sentences most relevant to the assigned class. It then
generates a set of similar sentences using a Markov chain text generator, and it replaces
the salient sentences with the synthetic ones, resulting in a new set of semantically
similar documents in the vicinity of a given instance. The generated documents are used
to train an interpretable decision tree that identifies words explaining the reason for the
classification outcome. A quick inspection of these synthetic documents and their salient
words helps explain why the black-box has assigned a given class to a document. We
performed a qualitative and quantitative evaluation of FEHAN and a baseline on four
different datasets to show the effectiveness of our proposal.
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1. Introduction

Many automated decision systems rely on highly accurate classifiers, such as deep neural
networks. Due to their hidden, difficult to comprehend internal structure, as well as to
their sheer size, they are often referred to as "black box" models [1]. At the same time,
making critical decisions concerning humans without understanding the justification of such
a decision is unacceptable both ethically and legally [2]. The widespread adoption of machine
learning algorithms has increased the necessity to trust to these models to employ them
for decision-making [3] in critical situations. Therefore, there is an increasing interest in
the Machine Learning community in deriving explanations able to describe a black box’s
behavior. Various types of black-box explanation algorithms exist, but from a top-level
perspective, they are categorized as model-specific versus model-agnostic, and local versus
global [4].

Backpropagating the importance signal from the output neuron to the input for each
one of the given instances is an explanation approach illustrated by [5]. DeepLift and Inte-
gratedGradient [6] are examples of this method that use a reference example for computing
the feature importance. Although these methods can be applied to parameterized functions
such as deep neural networks, these methods are strictly dependant on the choice of baseline
example. They require a vigorous search to find the best example. ABELE [7] is a model-
agnostic explainer for image classifiers that exploit adversarial autoencoders [8] to generate
local neighborhood. Although this model had remarkable results, it is only appropriate for
image classifiers. SHAP [9] is a model explainer that uses the shapely values to assign the
importance values to the input features that represent each one’s impact on the probability
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distribution of class labels. LIME [10] attempts to explain a black-box model’s behavior for
a given instance by generating a local neighborhood. This model is considerably simpler
and faster than other models, but this algorithm’s neighborhood generation can produce
examples that are not faithful to the original document. Additionally, based on the argu-
ment provided by [11] the attention and attribution mechanism may not be sufficient to
explain the classifier’s decision for two reasons: (i) the attention mechanism assigns a real
value from interval [0,1] to all of the document’s sentences. The more critical the sentence
is, the higher the assigned value, and it will be close to zero for less significant sentences,
but not zero. (ii) the assigned score doesn’t distinguish the importance of each sentence for
each class label. Since the attention assigns a real value to all sentences, the significance
of each sentence on the class labels distribution is not clear. Therefore, the interpretation
attention-based models based on the importance value is ambiguous.

In this paper, we propose FEHAN, a modularized Framework for Explaining Hierarchi-
cal Attention Network. FEHAN attempts to locally explain the behavior of Hierarchical
Attention Network (HAN) [12]. This modular framework is instantiated with HAN that
is an attention-based recurrent neural network for classifying a document. The attention
layer distinguishes the Informative Sentences (IS) in a given document. Accordingly, they
have more impact on assigning a class label for a given instance, so by replacing them with
artificial sentences, the data for a document’s vicinity can be created. For a given instance
classified by HAN, FEHAN generates a set of semantically similar documents. This new
set of synthetic documents is exploited to train an interpretable model - a decision tree -
from which the important words can be extracted to construct a saliency map explaining
the class label for a given document. Learning the interpretable classifier (i.e., decision tree)
on the neighborhood documents derives the important words representing the features that
locally explain the focus of the black-box classifier while classifying a document. In this
manner, the original essence of a given document is well preserved, and it will be enriched
with semantically similar examples.

We have conducted the experiments on four sentiment analysis benchmark datasets:
IMDB, Amazon, Yelp, and U.S. Airline Tweets. The obtained results show that the neigh-
borhood generated by our approach is more diverse for training the interpretable model
rather than LIME’s. Also, FEHAN preserves the original document’s essence in the neigh-
borhood data while it enriches the generated documents by adding semantically similar
sentences to the given instance. In this manner, the generated neighborhood data remain
faithful to the original document when it has better coverage over the vicinity of the given
instance. We then evaluate the FEHAN approach’s fidelity against LIME in datasets with
text data, demonstrating that we significantly outperform LIME.

The rest of the paper is organized as follows. Section 2 presents related works and recalls
notions and procedures composing the explanation method, which is described in Section 3.
Section 4 presents qualitative and quantitative experiments. Finally, Section 5 summarizes
our contribution, its limitations, and future research directions.

2. Background

The widespread adoption of machine learning algorithms has increased the necessity to
trust to these models to employ them for decision-making [3] in critical situations. The
need to understand the decisions of black-box models has resulted in the growth of research
on research on the explainability of these models [1, 13–15].

Various types of black-box explanation algorithms exist, but from a top-level perspective,
they are categorized as model-specific versus model-agnostic and local versus global [4].
Recently, early inroads into the explainability of deep learning models for text data have
been made [16, 17]. Frequently these systems rely on special features of the classified
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documents. The Generative Explainable Framework [16], e.g., assumes the availability of
short, aspect-focused summaries of the documents classified. In contrast, [17] relies on
product reviews and ties the explanation concept to this domain. In this paper we propose
a modular framework for the local explanation of an attention-based deep text classifier by
investigating the local neighborhood of a given document. The basic components used in
our framework are described in the rest of this section.

2.1. Hierarchical Attention Network

One of the document classification algorithms that takes advantage of Recurrent Neu-
ral Network (RNN) along with attention mechanism is Hierarchical Attention Network
(HAN) [12]. HAN attempts to construct the latent representation of documents from
the aggregated latent representations of sentences in that document. This model also ex-
ploits two levels of attention mechanisms [18] to increase/decrease the value of individual
words/sentences while classifying documents. HAN is composed of a word sequence encoder,
word-level attention, sentence encoder, and sentence-level attention. The structure of this
model is illustrated in Figure 1. A characteristic of this model is the extraction of impor-
tance coefficients at word-level and sentence-level, which gives us a better understanding of
HAN’s decision procedure. This property is a crucial factor in our neighborhood generator
module.

Figure 1. An overview of HAN.
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2.2. Markov Chain Text Generator

In our proposal, we employ a Markov Chain Text Generator to generate the synthetic
neighborhood, representing the key factor in understanding a black-box model’s local behav-
ior. Markov chain is a mathematical stochastic model that describes a sequence of events.
In this regard the probability of observing each event si such as only depends on its pre-
ceding event si−1 which is formulated as P (si |si−1 , ·, s1) = P (si |si−1). The probability of
transition from one state to another is called transition probability and can be stored as a
transition matrix. The number of rows and columns in this matrix is equal to the number
of states n; hence it would be a square n × n matrix. The simplicity and transparency of
this method encouraged us to employ it for neighborhood generation. Additionally, Markov
chain text generator doesn’t impose any restriction on the order of elements and it allow us
to reconstruct the underlying text, unlike n-gram models. Markov Chain’s use is essential,
as it preserves the distribution of features (in our case, words and their frequencies) of its
inputs. In our Markov model, each token of the corpus is a state, and we learn the prob-
ability of transitions between these states. To generate samples from this model, we can
start either start from a random token or a selected token and then move forward.

3. Modularized Framework for Explaining Hierarchical Attention Network

Explaining the decision of a black box model b on a given instance d, i.e., b(d) = y,
means presenting an explanation e, that belongs to a human-understandable domain E
(e ∈ E). This work focuses on explaining HAN black box decisions, an attention-based
recurrent neural network for text documents. Thus, the proposed framework FEHAN is
model-specific [19] because tailored to HAN’s interpretation. FEHAN describes HAN’s
local behavior for a specific data point d by inspecting its vicinity. The idea is based on the
intuition that, although the decision boundary for the black box can be arbitrarily complex
over the whole data space, in the local neighborhood of a data point, there is a high chance to
learn an interpretable model able to capture it [4, 10]. Hence, creating a set of semantically
similar instances in the vicinity of a given document and exploring the prediction of text
classifiers on them. The explanation e produced by FEHAN is a saliency map highlighting
the crucial words of the document d contributing to the black-box model’s decision.

Figure 2. An overview of the FEHAN framework.
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An overview of the general structure of FEHAN is given in Figure 2, and this process
takes place at the inference phase. The main elements of FEHAN are: (i) the informative
sentences extraction, (ii) the neighborhood generator module, and (iii) the interpretable
model. The explanation procedure is detailed as follows.

Informative Sentences Extraction. In the first step, HAN receives as input a selected
document d, processed with the word2vec embedding model [20], and returns the predicted
class label y and the most Informative Sentence (IS) identified in d. The sentence attention
layer in the structure of HAN returns a score for each one of the sentences that measure
the importance of that sentence for the classification of the document. After extracting
the importance signal from the Sentence Attention layer, the IS and the original document
are passed to the neighborhood generator module (step 2). The number of IS is a data-
dependent hyper-parameter that varies from a dataset to another. For example if the average
number of sentences in each document is around 10 sentences, we would select the top three
sentences as IS. In the few cases that the length of document is less than the predetermined
length of document, the attention layer assigns high scores to the sentences that are empty.

Our explanation method takes advantage of the attention score to obtain the IS; however,
if the attention scores are not available, other methods such as backward elimination [21]
can be applied to extract the IS.

Neighborhood Generator. This module first receives the selected document along
with the index of IS. To generate the synthetic sentences S, it looks at the first element of
IS. If the first element is a word, the Markov chain chooses it as the initial state; otherwise
(the index of IS refers to the end of the document), the Markov chain starts from a random
word. The general structure of Markov Chain text generator is similar to the transition
matrix, but for the implementation purpose we have employed dictionary of dictionaries to
preserve all possible states (words) and all possibilities for the next item in the chain. Then
it creates the neighborhood data H by replacing the IS of the document to be explained
with the ones in S (step 3). Note that, given a document d with m IS, the module generates
m× |S| synthetic documents, exchanging time by time one of the m sentences with one of
the sentences in S. Finally, each synthetic document in H is labeled by using the HAN.
For the generation of the synthetic sentences S, we proposed the Markov Chain. This
model is based on a sound mathematical foundation, and it tries to model the probability
of observing series of events. For text generation, each one of these events is a token of the
corpus. In that manner, the synthetic sentences will be semantically similar to the original
sentence, according to the distributed semantic principle that “a word is characterized by
the company it keeps” [22].

Interpretable Classifier & Explanation.
FEHAN builds an interpretable decision tree c trained on the locally generated docu-

ments (step 4). To this end, first, each document in the neighborhood is transformed into a
frequency vector representation by using the bag of unigrams. Then, an interpretable classi-
fier is trained on this data representation. Suppose the number of instances of different class
labels in the neighborhood is not balanced. In that case, we employ a heuristic proposed
in [23], that puts higher weight on the minority class and lower weight on the majority
class. This model is finally used for extracting the important features (words) for any class
label, useful for producing an explanation. The explanation of our method is the saliency
map of important words identified by the interpretable model. We have chosen the decision
tree as the interpretable model because the graphical presentation of a decision tree allows
the reader to overview a complex model easily. Also, the most influential features on the
prediction of class label are structured in a top-down format that means the level of each
feature in the tree shows the relative importance of features in the prediction [24].

An example of a returned saliency map based on the outputs of FEHAN and LIME is
presented in Figure 3, where the words relevant to the identified class label are colored in
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Figure 3. An original document of Yelp data classified by HAN as a "5 star" place (the
scale is 1 - negative - to 5 - as positive- ). The green shades represent the important
features for assigning the class label 5 star to the data and red shades for assigning the 1
star. Stronger colors, highlight more important features for classification. The important
words are extracted from the decision tree.

green (the shades of green shows the importance of words that agree with the current class),
and the ones that are relevant for the opposite class (in this example, negative class) are
colored in red. The intensity of colors shows the importance of that word for a class label.
In Figure 3, words in green are essential words that support the assignment of the positive
label to the document, while words in red support its assignment to the negative class. The
interpretable text classifier is trained on neighborhood documents generated with artificial
sentences created by a Markov Chain text generator.

We highlight that FEHAN1 is presented as a modularized framework for understanding
the behavior of attention-based document classifiers. Our proposed framework’s modularity
facilitates its development for similar scenarios or usage of other components with the same
characteristics.

4. Experiments

FEHAN has been developed in Python, using, the keras2 Tensorflow3 libraries for
the HAN, and scikit-learn4 for the decision tree. We experimented FEHAN on four
different free available text datasets with different characteristics and features (see Table 1):
(i) IMDB data, containing highly polarized opinions reviews on movies [25], (ii) Yelp data
recording reviews for businesses [26], (iii) U.S. Airline twitter data, containing anonymous
tweets related to the U.S Airlines [27], and (iv) Amazon dataset of product reviews [28].
We compare FEHAN’s results against the well-known LIME (Local Interpretable Model-
agnostic Explanations) [10].

To evaluate the behavior of HAN for document classification, we split the data into
three subsets of training (80%), testing (10%), and validation (10%) based on the suggested
splitting proportions showed in [29]. After training the HAN and the Markov model, we
placed them in our framework for the explanation process. For each given instance, we
created a set of 300 neighborhood examples, and then we feed them back to HAN for
classification.

We compared the outcomes of FEHAN against the LIME text explainer regarding its
fidelity to the black-box explanation. An interpretable model’s fidelity indicates its faithful-
ness to imitating the behavior of black-box’s behavior in the neighborhood of a particular

1https://github.com/MahtabSarvmaili/FEHAN
2https://keras.io/
3https://tensorflow.org/
4https://scikit-learn.org/

https://keras.io/
https://tensorflow.org/
https://scikit-learn.org/
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Table 1. Summary of the statistics of the four datasets. the number of sentences is shown
by #s (average and maximum per document). The average and maximum number of
words is shown by #w.

Yelp Amazon Airline
tweets IMDB

Documents 700000 278677 14640 50000
Categories 5 5 3 2
Average #w 9 8 7 13
Max #w 438 169 20 384
Average #s 8 4 2 10
Max #s 150 122 9 117

data point. This is important because the meaningfulness of an explanation should be at
least locally faithful. The local faithfulness of the model relates to the model behavior in the
original instance’s surroundings being predicted. Our decision tree’s fidelity is calculated as
the accuracy of the interpretable model’s prediction w.r.t the HAN’s prediction.

To measure the fidelity, we have tested the model with 6 uniformly sampled sets of the
test data. The number of test instances in those experiments is 50, 100, 150, 200, 250,
and 300. We reported the observed fidelity for them in Figure 4. The results show that
on all datasets, FEHAN outperforms LIME in imitating the black-box behavior. Moreover,
FEHAN has remarkably less variance than LIME. Based on the obtained results, FEHAN
presents more faithfulness to black-box behavior rather than the local interpretable classifier
of LIME.

Figure 4. Box plots of fidelity for the four datasets.

Moreover, we conducted the statistical tests on our obtained results to ensure that our
results are meaningful in all datasets. To validate our results, we employed the Wilcoxon
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test to analyze the fidelity of these models. For this purpose, we reported the obtained p-
values of the Wilcoxon test for all four datasets in Table 2. These very low p-values manifest
that the differences between FEHAN and LIME are significant; hence FEHAN statistically
outperforms LIME regarding fidelity in all benchmark datasets.

Table 2. The p− values of Wilcoxon test for black-box text classifiers

IMDB Amazon Yelp Airline
tweets

50 1.94× e−05 2.81× e−01 4.6× e−01 1.51× e−02

100 3.53× e−11 1.59× e−02 5.2× e−01 6.53× e−02

150 1.69× e−15 2.14× e−01 1.89× e−01 2.4× e−02

200 5.23× e−19 1.7× e−02 2.57× e−01 2.38× e−02

250 3.07× e−22 8.8× e−02 1.82× e−01 5.27× e−06

300 1.24e− 22× e−22 4.1× e−02 1.99× e−06 1.13× e−05

Afterward, we numerically evaluated the density and cohesion of neighborhood data
generated by the two explanation approaches [30]. To quantitatively show that FEHAN
produces higher quality neighborhood text data in comparison to LIME, we explored two
approaches: (i) measuring the cosine distance between the original document and neighbor-
hood (i.e., the cohesion of the neighborhood), and (ii) measuring the Local Outlier Factor
(LOF) (i.e., the density and compactness of neighborhood).

The average cosine distance value between the original document and the neighborhood
data examples shows the degree of similarity between the neighborhood data and the orig-
inal document. The results in Table 3 show that the average cosine distance of FEHAN
neighborhood is greater than LIME. The higher value of FEHAN’s cosine distance on four
datasets is related to the vocabulary’s diversity in the generated documents.

Table 3. The average cosine distance between the original document and neighborhood
data generated by FEHAN and LIME

IMDB Amazon Yelp Airline Twitter
FEHAN LIME FEHAN LIME FEHAN LIME FEHAN LIME

50 0.674 0.333 0.719 0.320 0.700 0.319 0.789 0.335
100 0.677 0.324 0.750 0.328 0.685 0.321 0.800 0.330
150 0.713 0.322 0.765 0.330 0.682 0.322 0.796 0.333
200 0.689 0.322 0.739 0.329 0.697 0.322 0.794 0.330
250 0.702 0.323 0.739 0.330 0.705 0.322 0.788 0.334
300 0.706 0.322 0.748 0.330 0.702 0.321 0.792 0.329

The Local Outlier Factor (LOF) is a metric for anomaly detection proposed by [31]. In
LOF, the data’s local density is compared against its neighbors’ local densities using a k-
nearest neighborhood to identify similar density regions. The points with a considerably
lower density to their neighbors are considered outliers using this strategy. In our paper, we
have employed the LOF to evaluate the neighborhood goodness, i.e., denser neighborhoods
with a lower presence of outliers.

Table 4 reports the average LOF for FEHAN and LIME on the four datasets. We observe
that FEHAN has lower LOF for most datasets than LIME, which means that the FEHAN’s
neighborhood generation based on the Markov Chain leads to a much denser neighborhood
with a smaller presence of outliers with respect to LIME.

Comparing the cosine similarity and LOF of generated data shows that FEHAN’s has a
higher diversity in the number of words. These words are also more semantically similar to
the original document rather than LIME.
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Table 4. The average LOF between the original document and neighborhood data gen-
erated by FEHAN and LIME

IMDB Amazon Yelp Airline Twitter
FEHAN LIME FEHAN LIME FEHAN LIME FEHAN LIME

50 1.42 * e 07 2.22 1.028 1.78 1.057 7.55 * e 07 1.042 2.11 * e 07
100 7.80 * e 07 2.35 1.027 2.55 * e 07 1.071 4.12 * e 07 1.037 2.10 * e 07
150 1.15 * e 07 2.36 1.028 5.88 * e 07 1.076 2.52 * e 07 1.96 * e 07 4.88 * e 07
200 1.94 * e 07 2.29 1.034 1.45 * e 07 1.067 3.43 * e 07 1.042 2.11 * e 07
250 1.13 * e 07 9.61 1.035 1.53 * e 07 1.063 3.54* e 07 1.89 * e 07 5.03 * e 07
300 6.19 * e 07 2.30 1.79 * e 07 4.26 * e 07 1.069 2.50 * e 07 1.038 3.84 * e 07

Finally, to evaluate the neighborhood data qualitatively, we provide an example of neigh-
bors generated by FEHAN and LIME and the predicted class label assigned by their inter-
pretable models. Figure 5 depicts examples of positive, neutral, and negative neighborhood
documents generated and classified by FEHAN’s decision tree and LIME’s text explainer
for the Amazon5. The green, blue, and red color shows the positive, neutral, and negative
classes. The original and pre-processed document is given in the first two rows of this fig-
ure. Since the training process uses the data after pre-processing, the generated instances
follow the same style. We observe that FEHAN generated more similar documents to the
original one when compared with LIME. The integrity of the data is well preserved, with
semantically equivalent examples sampled from the original dataset. FEHAN keeps the cen-
tral concept of a given instance and non-important parts, and it tries to generate examples
that have the same context of the original example but in the vicinity of the data. On the
other hand, LIME loses the information in the process of neighborhood generation. This is
because LIME suppresses words in the document, while FEHAN only replaces informative
sentences with synthetic sentences. Moreover, the process of neighborhood generation by
LIME can result in invalid examples due to eliminating all input features. This condition
gets worsened for datasets that have generally shorter documents.

5. Conclusions

In this paper, we have presented FEHAN, A modularized Framework for Explaining
Hierarchical Attention Network. We argue that the common model-agnostic explanation
approach (LIME) based on an interpretable classifier’s properties in the synthetic, local
neighborhood of the instance explained is sub-optimal for text data. We show with FEHAN
how neighborhood data can assist in the opening of the black box. Our experimental results
show that FEHAN’s explanations are better than those provided by LIME’s implementation
for text data quantitatively and qualitatively. The neighborhood’s evaluation indicates that
the FEHAN not only preserves the essence of the original document but also enriches the
generated synthetic data with semantically similar sentences. This feature of our model is
significantly strengthened for smaller datasets when randomly eliminating words can result
in invalid examples. Our results also indicate that FEHAN’s predictions remain faithful to
the HAN’s behavior rather than LIME in all of the datasets.

Although the proposed framework is modular in terms of limitations, we observe that it
cannot be viewed as a classifier-agnostic approach, as the use of HAN or any other black
box providing important sentences is essential. Moreover, the results also depend on the
quality of the used embedding models.

As future work, we intend to study the use of other back box models alternative to HAN.
One possibility is using methods based on extracting text summarizing (e.g., [32]), which

5Although the Amazon dataset has five categories, we have selected the most frequent ones, which are the
negative, positive, and neutral generated instances from FEHAN and LIME neighborhood
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Figure 5. A neighborhood example generated by FEHAN and LIME for an instance of
Amazon dataset. The green, blue and red depicts the most positive, neutral and the
most negative classes in this dataset. FEHAN’s decision tree and LIME’s text explainer
determines the positive and negative label for the generated neighborhood data.

extracts from the document sentences salient for its content. Another essential factor to
investigate is the influence of the quality of the text embeddings on the results. One could
experiment with more powerful embeddings like BERT. Additionally, we can employ a robust
lexical database such as Wordnet for the neighborhood generation. An interesting question
to evaluate would be whether using such stronger embeddings translates into significantly
improve explanations or whether the word2vector approach suffices. While decision trees
are generally accepted as white-box classifiers, alternatives exist (e.g., decision lists), and
they could be tried in FEHAN. Finally, further quantitative evaluation of FEHAN should
look at the quality of the neighborhood, e.g., by using them in a k-NN classifier and com-
paring the quality of such classifier to the one obtained from other synthetically generated
neighborhoods.

Acknowledgements

The authors would like to thank NSERC (Natural Sciences and Engineering Research
Council of Canada) for financial support.

References

[1] F. Doshi-Velez and B. Kim. “Towards a rigorous science of interpretable machine learning”.
In: arXiv preprint arXiv:1702.08608 (2017).

[2] E. EC. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation)(Text with EEA relevance). ELI. 2016.

[3] T. Miller. “Explanation in artificial intelligence: Insights from the social sciences”. In: Artifi-
cial Intelligence 267 (2019), pp. 1–38.

[4] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. “A survey of
methods for explaining black box models”. In: ACM computing surveys (CSUR) 51.5 (2018),
pp. 1–42.



11

[5] A. Shrikumar, P. Greenside, and A. Kundaje. “Learning important features through propa-
gating activation differences”. In: arXiv preprint arXiv:1704.02685 (2017).

[6] M. Sundararajan, A. Taly, and Q. Yan. “Gradients of counterfactuals”. In: arXiv preprint
arXiv:1611.02639 (2016).

[7] R. Guidotti, A. Monreale, S. Matwin, and D. Pedreschi. “Black Box Explanation by Learning
Image Exemplars in the Latent Feature Space”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer. 2019, pp. 189–205.

[8] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. “Adversarial autoencoders”.
In: arXiv preprint arXiv:1511.05644 (2015).

[9] S. Lundberg and S.-I. Lee. “A unified approach to interpreting model predictions”. In: arXiv
preprint arXiv:1705.07874 (2017).

[10] M. T. Ribeiro, S. Singh, and C. Guestrin. “" Why should i trust you?" Explaining the predic-
tions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining. 2016, pp. 1135–1144.

[11] C. Grimsley, E. Mayfield, and J. R.S. Bursten. “Why Attention is Not Explanation: Surgical
Intervention and Causal Reasoning about Neural Models”. English. In: Proceedings of The
12th Language Resources and Evaluation Conference. Marseille, France: European Language
Resources Association, May 2020, pp. 1780–1790. isbn: 979-10-95546-34-4. url: https://
www.aclweb.org/anthology/2020.lrec-1.220.

[12] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. “Hierarchical attention networks
for document classification”. In: Proceedings of the 2016 conference of the North American
chapter of the association for computational linguistics: human language technologies. 2016,
pp. 1480–1489.

[13] H. J. Escalante, S. Escalera, I. Guyon, X. Baró, Y. Güçlütürk, U. Güçlü, and M. Van Gerven.
Explainable and interpretable models in computer vision and machine learning. Springer, 2018.

[14] Q.-s. Zhang and S.-C. Zhu. “Visual interpretability for deep learning: a survey”. In: Frontiers
of Information Technology & Electronic Engineering 19.1 (2018), pp. 27–39.

[15] Y. Dong, H. Su, J. Zhu, and B. Zhang. “Improving interpretability of deep neural networks
with semantic information”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2017, pp. 4306–4314.

[16] H. Liu, Q. Yin, and W. Y. Wang. “Towards Explainable NLP: A Generative Explanation
Framework for Text Classification”. In: Proceedings of the 57th Conference of the Associ-
ation for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers. Ed. by A. Korhonen, D. R. Traum, and L. Màrquez. Association
for Computational Linguistics, 2019, pp. 5570–5581. doi: 10. 18653 / v1 / p19- 1560. url:
https://doi.org/10.18653/v1/p19-1560.

[17] S. Ouyang, A. Lawlor, F. Costa, and P. Dolog. “Improving explainable recommendations with
synthetic reviews”. In: arXiv preprint arXiv:1807.06978 (2018).

[18] M.-T. Luong, H. Pham, and C. D. Manning. “Effective approaches to attention-based neural
machine translation”. In: arXiv preprint arXiv:1508.04025 (2015).

[19] R. Guidotti, J. Soldani, D. Neri, A. Brogi, and D. Pedreschi. “Helping your docker images to
spread based on explainable models”. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer. 2018, pp. 205–221.

[20] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed representations of
words and phrases and their compositionality”. In: Advances in neural information processing
systems. 2013, pp. 3111–3119.

[21] R. Kohavi, G. H. John, et al. “Wrappers for feature subset selection”. In: Artificial intelligence
97.1-2 (1997), pp. 273–324.

[22] J. R. Firth. Selected papers of JR Firth, 1952-59. Indiana University Press, 1968.
[23] G. King and L. Zeng. “Logistic regression in rare events data”. In: Political analysis 9.2

(2001), pp. 137–163.
[24] R. Elshawi, M. H. Al-Mallah, and S. Sakr. “On the interpretability of machine learning-based

model for predicting hypertension”. In: BMC medical informatics and decision making 19.1
(2019), pp. 1–32.

https://www.aclweb.org/anthology/2020.lrec-1.220
https://www.aclweb.org/anthology/2020.lrec-1.220
https://doi.org/10.18653/v1/p19-1560
https://doi.org/10.18653/v1/p19-1560


12

[25] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. “Learning Word
Vectors for Sentiment Analysis”. In: Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA:
Association for Computational Linguistics, 2011, pp. 142–150. url: http://www.aclweb.
org/anthology/P11-1015.

[26] D. Tang, B. Qin, and T. Liu. “Document modeling with gated recurrent neural network
for sentiment classification”. In: Proceedings of the 2015 conference on empirical methods in
natural language processing. 2015, pp. 1422–1432.

[27] A. Rane and A. Kumar. “Sentiment Classification System of Twitter Data for US Airline Ser-
vice Analysis”. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC). Vol. 01. 2018, pp. 769–773. doi: 10.1109/COMPSAC.2018.00114.

[28] R. He and J. McAuley. “Ups and downs: Modeling the visual evolution of fashion trends with
one-class collaborative filtering”. In: proceedings of the 25th international conference on world
wide web. 2016, pp. 507–517.

[29] J. Zhao, Y. Kim, K. Zhang, A. M. Rush, and Y. LeCun. “Adversarially regularized autoen-
coders”. In: arXiv preprint arXiv:1706.04223 (2017).

[30] R. Guidotti and A. Monreale. “Data-Agnostic Local Neighborhood Generation”. In: 2020
IEEE International Conference on Data Mining (ICDM). IEEE. 2020, pp. 1040–1045.

[31] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. “LOF: identifying density-based local
outliers”. In: Proceedings of the 2000 ACM SIGMOD international conference on Management
of data. 2000, pp. 93–104.

[32] A. Rezaei, S. Dami, and P. Daneshjoo. “Multi-Document Extractive Text Summarization via
Deep Learning Approach”. In: 2019 5th Conference on Knowledge Based Engineering and
Innovation (KBEI). IEEE, pp. 680–685.

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1109/COMPSAC.2018.00114

	1. Introduction
	2. Background
	2.1. Hierarchical Attention Network
	2.2. Markov Chain Text Generator

	3. Modularized Framework for Explaining Hierarchical Attention Network
	4. Experiments
	5. Conclusions
	Acknowledgements
	References
	References


