
SINGLE-STUDY PAPER

Recognizing the Known Unknowns; the Interaction Between
Reflective Thinking and Optimism for Uncertainty Among
Software Developer’s Security Perceptions

Matthew Ivory1, John Towse1, Miriam Sturdee2, Mark Levine1, and Bashar Nuseibeh3, 4
1 Department of Psychology, Lancaster University
2 School of Computer Science, St. Andrews University
3 Department of Computer Science and Information, LERO (Irish Software Research Centre), Limerick, Ireland
4 School of Computing and Communications, Open University

Software development is a complex process requiring aspects of social, cognitive, and technical skills. Software engineers face high
levels of uncertainty and risk during functional and security decision making. This preregistered study investigates behavioral
measures of cognitive reflection, risk aversion, and optimism bias among professional freelance software developers and computer
science students, to expose relationships between uncertainty-associated language and risk sensitivity. We employ content analysis
with a mixed-effect model to understand how psychological dimensions influence risk sensitivity in secure software development.
We show an interaction between cognitive reflection and optimism bias in the proportion of uncertainty-related language used.
Overly optimistic outlooks combined with higher cognitive reflection drives up expressions of uncertainty, while pessimistic or
realistic individuals reduce uncertainty as cognitive reflection increases. Software engineers who hold average or pessimistic views
on the security of their code are more likely to speakmore intuitively about security and risk.We discuss the potential of our findings
in relation to understanding how to leverage language used by engineers as markers of risk aversion. Encouraging increased
discourse could be used as a catalyst for increased cognitive reflection and grounding optimistic behaviors, leading to more careful
decisions.
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Software is at the foundation of our modern world; we rely on it
for almost everything, from communication to financial transac-
tions, to information storage. When software fails or is altered by
malicious actors, this has real-world consequences, including
psychological harm (Palassis et al., 2021). Consequently, reducing
software vulnerabilities—for example, by applying psychological
insights and methods to those who create software—is becoming
increasingly important.
Secure coding is defined as a programming practice that avoids

software vulnerabilities (Rauf et al., 2021), allowing for data
exchanges and logic flows to occur without interference by third
parties. For our purposes, a security vulnerability is defined as an
unexpected logic flow resulting in exploitable situations allowing
for unintended access to information or functionality. Reducing
vulnerabilities and increasing risk sensitivity in software engineers
therefore has the potential for improving secure coding practices.
The solution appears simple—“Write secure software!,” yet such

imperatives are usually not sufficient for secure coding (Hallett
et al., 2021). It is well established that warnings or commands alone
do not motivate action unless an individual perceives the importance
of the command (Dash & Gladwin, 2007). Despite software
security’s importance, 76% of software possessed at least one well-
known vulnerability in a recent review (Veracode, 2020), and 69%
of software engineers were unaware of third-party vulnerabilities
within their own code (Kula et al., 2018). Our approach works
toward a better understanding of the psychological profiles of those
who write software, to ultimately facilitate an increase in the
salience of security and deployment of secure practices.
Secure coding can be achieved through technical interventions,

such as using dedicated testing teams or rigorous workflows, but
with over 40% of the app software engineer community comprising
of solo or amateur software engineers (van der Linden et al., 2020),
it is important to address the individual within the development
process, rather than just roles and technical solutions.
When investigating software engineers’ priorities, functionality

has repeatedly superseded security (Kirlappos et al., 2013; Lopez,
Sharp, et al., 2019), despite implicit security expectations in high-
quality software (Tahaei & Vaniea, 2019). Even when given
security-specific coding tasks (such as password storage), security is
often omitted unless prompted (Hallett et al., 2021; Naiakshina
et al., 2019). A reduced security focus has been attributed variously
to a perception of effort (Kirlappos et al., 2013), absence of
responsibility (Gotterbarn, 2001), and even to mistaken assumptions
that their tools are secure (Nadi et al., 2016; Palombo et al., 2020).
To our knowledge, the disposition toward risk and uncertainty has
not been systematically explored.
To that end, we use a novel approach to highlight links between

domain-general psychological constructs such as cognitive reflection,
risk aversion, and optimism biases as mediators of how engineers
might think about security. This research emphasizes the need to
consider individual differences in the psychology of engineers as their
actions can have significant impact within the real world, consistent
with the suggestion that heuristics and biases impact secure software
decision making (Brun et al., 2022; Oliveira et al., 2014, 2018).
By deliberately using abstract cognitive measures as opposed to

signals from software-specific activities, we aim to develop an
understanding of how cognition shapes or molds those activities.
Through a quantitative analysis of language use around security
perceptions, we can highlight links between software security and

the language used. Language is grounded in perception and action
and can be used to share our internalized models with others
(Hagoort, 2023; Jackendoff, 2009). Through studying how software
engineers describe security within their work and their personal
experiences (or absence of), we can associate their language with
cognition, which reflects their internal models and beliefs, and may
reflect their real-world behavior, but importantly, it may provide an
opportunity to identify potentially insecure coding practices.

Cognitive Processing Styles

Dual processing theory frames decision making and reasoning in
terms of individual propensity to engage in different cognitive styles
(Evans, 2003). System 1 processing is driven by intuition and
heuristic use, allowing individuals to reduce complex decisions into
simpler operations requiring less cognitive effort (Kahneman et al.,
1974; Kahneman & Frederick, 2002). Heuristics form “mental
shortcuts” that can be used in multiple scenarios to simplify and
speedup decisions (Beike & Sherman, 1994). Through heuristic use,
System 1 processing is much faster, automatic, and intuitive
compared to more drawn-out processing, or System 2. System 2
processing involves deliberate, thought-out, and analytic judge-
ments, allowing for abstract and hypothetical thinking. System 2 is
more computationally demanding than System 1, attempting to
arrive at optimal solutions by analyzing available information, and is
reserved for situations that cannot be resolved with System 1
processing.

A default-interventionist model of dual processing (Evans &
Stanovich, 2013; Kahneman & Frederick, 2002) suggests decision
making uses System 1 as a default, and System 2 is deployed only
when it is sufficiently cued and available (Damnjanović et al., 2019;
Evans, 2010b). Both systems can possess conscious and uncon-
scious aspects of cognition (Evans, 2010a).

If System 2 is not sufficiently cued, then decision making relies on
heuristics. Gigerenzer (2002) suggested that these heuristics form
part of an adaptive toolbox, allowing for rational decisions within
the constraints of the available information (bounded rationality).
Importantly, a core aspect of the adaptive toolbox is that heuristics
can be considered ecologically rational if they benefit decision
making within specific contexts (Gigerenzer, 2015). When
heuristics fail to provide good choices, it is not strictly the cognitive
mechanism itself, but rather its poor fit to the decision context
(Gigerenzer & Todd, 1999; Kahneman et al., 1974). This is relevant
to writing secure code, as it has been suggested previously that
heuristics do not provide rational decisions in these contexts
resulting in biased decision making (Oliveira et al., 2018).

Biases can be defined as systematic, flawed response patterns that
deviate from expected normative performance (Evans, 1984). Not
all heuristics invoke biases and poor decisions, but in certain
instances, they can result in nonoptimal decisions. One example of a
context where heuristics become biases is software security. In daily
life, we possess no security heuristic, and by extension, no heuristic
exists for secure coding (Oliveira et al., 2014). Oliveira et al. primed
developers for security which increased their sensitivity to software
vulnerabilities, dual-processing theory would frame this as priming
that triggers System 2 processing. Previous work following the
claim that software security is heavily impacted by biased thinking
has examined links between general cognition and secure coding
(Brun et al., 2022; Oliveira et al., 2018), whereas we build upon this
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claim by using widely deployed measures of thinking and dual
processing to examine the individual differences.
Previous research suggests security prompting can increase code

quality (Hallett et al., 2021), specific vulnerability identification
(Spadini et al., 2020), and code comprehension (Danilova et al.,
2021). Moreover, System 1 processing can be suppressed in favor of
System 2 through prompting, either overtly through verbal/written
requests (Evans & Stanovich, 2013; Pennycook et al., 2020), or
implicitly through metacognitive prompts (Alter et al., 2007; Alter
& Oppenheimer, 2008).
So how can we measure the disposition toward types of thinking

and biases? We review evidence that cognitive reflection examines
the activation of the processing systems, prospect theory measures
risk seeking behaviors, and optimism bias is a proxy for intuitive
processing.

Cognitive Reflection

Cognitive reflection is the ability to reflect upon a question before
answering and inhibiting the immediate response and is most
commonly measured using a form of the Cognitive Reflection Test
(CRT; Frederick, 2005). In this article, we take the position that CRT
is a useful measure of an individual’s propensity to activate System
2 processing in response to a question requiring more deliberate
thought, and by virtue of engaging system 2, is also a measure of
System 1 suppression (Frederick, 2005).
Specifically, the CRT has been widely deployed as a measure of

System 2 engagement, through the suppression of System 1. The
CRT presents questions with intuitive, yet incorrect answers and one
must reflect on the question to respond correctly. An example of a
CRT question is, “A bat and a ball cost $1.10 in total. The bat costs
$1.00 more than the ball. How much does the ball cost?”1 The
intuitive and incorrect response is the most common answer
(Frederick, 2005; Sinayev & Peters, 2015), implying that indeed
System 1 thinking is a default mechanism.
CRT has been informative for illuminating decision making in the

workplace. Teachers in higher education demonstrated higher CRT
being associated with teaching more technology-related materials
(Janssen et al., 2019), implying educators with higher reflective
thinking are more suited to teaching fields that require high levels of
logical thinking (such as information technology). In terms of teaching
experience, CRT was associated with increased rationality and greater
consideration of future events (Čavojová & Jurkovič, 2017).
To our knowledge, there is no empirical work investigating CRT

and software development, however, CRT has been linked with
predicting susceptibility to detecting phishing emails (Jones et al.,
2019), loss aversion (Frederick, 2005), and forecasting (Moritz
et al., 2014).

Optimism Bias

Bias susceptibility can be used as a proxy to capture the strength
of System 1 processing. Unrealistic optimism is a bias where
individuals perceive themselves to be less likely to experience
negative events compared to others (Sharot, 2011;Weinstein, 1980).
People typically exhibit a persistent bias regarding future events, in
that they overestimate the likelihood they will experience positive
events and underestimate the chances of experiencing negative ones.
This bias covers a broad range of events, from life events such as car

accidents to more mundane events, such as estimating the time
required to complete a project (Cappos et al., 2014).

For cybersecurity, users have been found to underestimate their
risk online, increasing their vulnerability cybersecurity attacks
(West, 2008; Wiederhold, 2014). In a thematic analysis of the same
data presented in this article, engineers reported negative events as
being damaging to their identity as an engineer (Ivory et al., 2023),
indicating that for some, they associate the potential of software
vulnerabilities in one’s code as being a negative event. As such, a
logical assumption would be that software developers are also
susceptible to optimistic outlooks toward their work, and under-
estimating the likelihood of negative events, such as vulnerabilities
in their code (as a potential marker of low-quality work).

Optimism in the software development domain has been
previously investigated using professionals, with software engineers
being worse at estimating time management than those in
nontechnical roles (Mølokken & Jørgensen, 2005). Both software
engineers and executives experience difficulties in making security-
related decisions, demonstrating overconfidence in their software
security (Loske et al., 2013). We extend the understanding of
optimism bias in a security-specific context by relating this to the
language used around software security.

Risk Aversion

Risk aversion can be linked to prospect theory, which suggests
decisions maximize gains and minimize losses (Kahneman &
Tversky, 1979). People experience negativity from a loss more
strongly than positivity from gains. Accordingly, people typically
make choices that minimize loss over maximizing gain (Levy, 1992).

Frederick (2005) reported an association with prospect theory and
CRT, showing higher CRT scores accompanied increased risk
aversion to losses (i.e., an increased willingness to accept a sure loss
than to risk a greater loss). Frederick also showed people make
riskier decisions when facing potential gains (willing to risk greater
gains than accept sure gains). This supports the idea risk aversion is
influenced by heuristics and cognitive biases. Risk aversion has
wider generalizability toward, for example, general decision making
under risk (Abdellaoui et al., 2007).

Kina et al. (2016) examined software engineer tool adoption
practices and found that when new tools are not guaranteed to
maximize profit and contain risks, engineers are more risk averse and
instead rely upon the known familiarity of familiar tools. This
suggests a certainty effect, or bias in play. When examining factors
that shape software project decisions, loss magnitude was considered
a more significant factor than loss likelihood, highlighting the
relevance of choice value (Keil et al., 2000). By measuring risk
aversion as a function of risk sensitivity in language used when
talking about security, we can examine how security is framed and
how the framing manifests in the language used.

Motivations

There have been calls for more psychological research within
computing and software security (Acar et al., 2016; Capretz &
Ahmed, 2018), with greater appreciation of the individual involved,
and the heterogeneity of behaviors relevant to development roles.

1 The intuitive response is 10 cents, but the correct answer is 5 cents.
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The present research answers these calls by exploring the role of
individual cognition and its effect on security perceptions. We
address this by investigating the cognitive differences seen in risk
sensitivity when talking about security in software. Within software
engineering, the role of biases and heuristics has been acknowledged
(Chattopadhyay et al., 2020; Petre, 2022), as well as in a systematic
review, while noting that research has yet to fully characterize and
describe their impact (Mohanani et al., 2020). Psychology is well
positioned to respond to this gap through empirical research.
Through cognitive measures and the analysis of individual
differences, we can apply dual processing theory to better
understand how this ultimately explains perceptions of security
within software development.
Two different populations were included in our sample, freelance

developers, and computer science students, as they represent two
different timepoints in the software engineer lifecycle. Students
represent early stage, less experienced engineers, and freelancers
represent those who have experience from prior projects. The
motivation for using both populations is to better understand how
security perceptions and risk sensitivity may change (or not change)
over the lifecycle of engineers. Increasing awareness of the
cognitive features that underpin security perceptions in software
across the engineer lifecycle, we are better placed to provide
interventions at the most effective points. If risk sensitivity is similar
across both populations, then intervening as early as possible may be
the solution, whereas if a difference is seen, indicating an event or
events altering risk sensitivity, then interventions should look to
address these events.
This article is part of a larger project (Ivory, 2022) that examines

both cognitive links and risk perception, alongside social identity,
and responsibility within software development. The project
comprises two independent, self-contained components, with the
complementary package focusing on a thematic analysis of
responsibility and risk acceptance (Ivory et al., 2023). The overall
project information and data can be found at https://doi.org/10
.17605/OSF.IO/P6DY5.

Hypotheses

Three hypotheses were created to direct this research:

Hypothesis 1: Higher risk aversion scores will be associated
with increased awareness and sensitivity to risk in language
describing professional work related to software development.
Lower risk aversion (higher risk attraction) will be associated
with less awareness and sensitivity to risk in language
describing professional work.

Hypothesis 2: Higher cognitive reflection test scores will be
associated with increased awareness and sensitivity to risk in
language describing professional work. Lower cognitive reflec-
tion (higher risk attraction) will be associated with less awareness
and sensitivity to risk in language describing professional work.

Hypothesis 3:Mean scores closer to zero on the novel OWASP2

risk task will be found with higher scores of cognitive
reflection. Scores of zero are expected to represent a realistic,
unclouded view of risk which should align with more reflective
thinking styles.

Methodology

Participants

As per the preregistration, we required a minimum sample of 122
participants, 61 from each population to meet a desired power level
of 80%. A sample of 150 were sought to account for low-quality
responses. We recruited 149 participants and excluded data from
eight participants; four failed over 50% of attention checks, one
preferred not to provide gender information (one observation would
not be appropriate to use in analysis to make meaningful
implications), and three provided responses of less than 20 words
to the questions. Our data corpus thus comprises 141 participants
(“software engineers”), 69 of whom were professional freelance
software (six females and 63 males) developers and 72 were
computer science (CS) students (31 female and 41 male).

All research involved in this project was approved by the
University Faculty Ethics committee. Participants provided informed
consent before commencing with the research study.

We recruited developers using the freelance website, https://www
.upwork.com/. We uploaded an advertisement (available on OSF;
https://doi.org/10.17605/OSF.IO/P6DY5) asking participants to
complete a study about their understanding of security in software
development. We specified that participants should be currently
working in software development, have experience writing secure
code and have been involved in noneducation-based software
projects. We compensated freelance developers at rate of £10/hr.
The student sample was collected from two sources, using internal
university mailing lists and the recruitment website, Prolific. We
compensated CS students at a rate of £8.50/hr.

Age details can be found in Table 1. Due to data collection issues,
nationality data for developers are unavailable, which was substituted
with country-level location. Figure 1 shows an approximation of
participant location and nationality by presenting continental-level
data. Most people do not emigrate from their origin country, with
around one in 30 migrating internationally (McAuliffe &
Triandafyllidou, 2021). Representing both nationality and location
together approximates both data types on a continental scale.
Ethnicity and socioeconomic status were not collected in the study
design and cannot be reported or discussed.

Materials

Participants completed the study through the online surveying
software Qualtrics. The survey (in study presentation order) included
demographic information, an OpenWebApplication Security Project
(OWASP) vulnerability task (OVT), four open-text response
questions focused on risk awareness, aversion, and mitigation in

Table 1
Reported Ages of Participants Included in the Analysis

Age Developer Student

18–24 28 42
25–34 34 20
35–44 6 8
45–54 1 2

2 See section OWASP Vulnerability Task for further details.
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software development, a gambling task and two versions of CRTs
(Frederick, 2005; Thomson & Oppenheimer, 2016).

OWASP Vulnerability Task

The OVT is designed to measure unrealistic optimism in software
security by leveraging familiar concepts, such as well-known
vulnerabilities that are well established and consistently highlighted
year-on-year. It can be expected that software engineers will perceive
including vulnerabilities in their own code as a more negative event
than vulnerabilities created by other developers. The OVT builds
upon the finding that individuals tend to underestimate the likelihood
of negative events affecting them (Sharot, 2011; Weinstein, 1980).
While previous cybersecurity research has focused on users and their
optimism (West, 2008;Wiederhold, 2014), we devised ameasure that
is specific for software developers who engage in secure coding. The
OVT is a measure of comparative optimism between an individual’s
estimation of their own likelihood of including security vulnerabilities
compared to an average developer.
The measure uses the 2021 top five vulnerabilities: Injection flaws,

Broken Authentication, Sensitive Data Exposure, XML External
Entity flaws, and BrokenAccess Control.3 The top five vulnerabilities
were used as opposed to the full list of 10 as less experienced
developers are more likely to be familiar with these vulnerabilities.
The OVT consists of two parts, separated by a secondary task, and

presented in a randomized order to reduce recall effects. The first asks
participants to estimate the percentage likelihood of a specific
vulnerability existing in web applications released by the “average
developer.” The second part asks respondents the likelihood of
themselves introducing these vulnerabilities into their own code.
Similar measures have been used previously, asking participants for
twomeasures of success, with the first being about personal confidence
in correctly answering a question, followed by a second asking about
the percentage of other people who would answer correctly (De Neys
et al., 2013; Frederick, 2005; Hoover & Healy, 2019).

Perceptions of Software Security

The qualitative questions consisted of four items asking
participants about their experiences, thoughts, and opinions on
security within software development. Participants had the option to
write answers or record audio responses using Phonic (https://www
.phonic.ai). Participants were asked to write for at least 4 min or speak
for 2 min per question. The questions asked are shown in Table 2.

Risk Aversion

The gambling exercise replicated that used by Frederick (2005).
Thirteen questions sought preference between two options of
gaining or losing money. Eight questions contrasted gain scenarios
(“Gain £100 for sure or a 90% chance of £500”), and five contrasted
loss scenarios (“Lose £50 for sure or a 10% chance to lose £800”).
All questions were presented in a randomized order.

Cognitive Reflection

We employed two CRTs. The original CRT (Frederick, 2005),
and the CRT-2 (Thomson & Oppenheimer, 2016), an alternate
version designed both to reduce the numerical nature of the
questions and address floor effects. We reworded question texts,
altering names and values to mitigate attempts to answer questions
through an online search for a matching string. The core principle of
each question was not modified. An example is changing the word
“bat” and “ball” for “article clip” and “elastic band,” respectively.
We checked whether participants had seen or answered CRT
questions before, although previous research (Białek & Pennycook,
2018; Stagnaro et al., 2018) suggests scores are stable across repeat
exposure. We recorded response times to the CRT questions and

Figure 1
Map Displaying Approximated Location/Nationality Data of Participants on a Continent Level

Note. This approximates location and nationality of each participant due to expected immigration movement. “Participant
Distribution” by Matthew Ivory, licensed under CC BY 4.0 from https://doi.org/10.17605/OSF.IO/P6DY5.

3 Definitions can be found on the OWASP top ten list—https://owasp.org/
www-project-top-ten/.
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instructed participants to complete the CRT questions as fast as
possible to reduce internet searching.

Procedure

Participants were presented through Qualtrics with an informa-
tion sheet that described aims and intentions, following which they
gave their informed consent. Participants then answered demo-
graphic questions, completed the first OVT for the average software
engineers, split by the qualitative questions, then completed the
second OVT. This was followed by the gambling task and the CRT
measures. Finally, participants were presented with a debrief sheet

that provided further information, references, and contact details for
the researchers. The survey flow is shown in Figure 2.

Research Design

The study comprises a between-participants observational survey
design grouped by a two-level factor of population (freelancer vs.
student). Data from two independent populations were collected
and contrasted. Data validity can be seen in the OSF repository
additional online materials.

Data Operationalization

Question responses were operationalized through content
analysis. As participants had been asked to write for at least 4
min or speak for 2 min per question, we did not expect short
responses. The average response wordcount for developers were on
average 81.09 words long (SD = 61.71), and the students’ responses
were longer at 94.38 words (SD = 38.38). As a preregistration
deviation, we removed responses of 20 word or less (forming a
proxy of low quality) as they were less than one standard deviation
from the average response (for developers). Of the short responses,
38 were removed in total, from 22 participants. Two participants
(both freelancers) had all responses removed, two participants had
three responses omitted, six had two responses removed, and 12
participants had only one response removed.

Responses were unnested into single words, words that appeared
five or fewer times were removed, remaining words were stemmed
to their shortest form (e.g., “secured” and “secure” were stemmed to
“secur”). Stopwords (“and,” “because,” “though”) were removed to
reduce noise. Then using the Computer Science Academic Vocabulary
List (Roesler, 2020), words were tagged as computer science/software
relevant. The remaining words were manually tagged for topics of
uncertainty, software products, workplace specific language, finance,
geographic references, legal, and shallow skills. Following coding, all
taggedwordswere reviewed for appropriateness, and discussed among
the research team. Two independent researchers were given a sample
of all the retained words and asked to categorize them using the
finalized tags, resulting in 20% of all words being reviewed
independently (each researcher reviewing 10%).

Interrater reliability was initially assessed through Cohen’s κ
(Cohen, 1960). Yet, this measure does not perform well when
handling imbalances in the marginal distributions of confusion
matrices (Warrens, 2014). In the present case of assessing the
reliability of topic coding, the distributions are greatly skewed in

Table 2
Qualitative Questions Presented to Participants in the Order Listed

Number Question

1 Describe a time when you successfully developed and
released/launched a software project, either in a
professional or personal capacity. This could either be a
recent example, or perhaps a project you were
particularly proud/happy with. Please include
information concerning the purpose of the project and
how important security was during development.

2 When considering the process of developing and launching
software/web applications, what is at risk of potentially
going wrong and how could these risks affect you? You
should consider the size or the significance of the
potential factors that may go wrong and how this may
affect you (e.g., risk of functional failure, financial
losses, damage to reputation, etc.)

3 If you were to consider software development as a series of
‘gambles’ (decisions that confer possible risk), what
gambles would be considered worthwhile or worth a risk
during the process of developing software? Why? These
gambles may be considered from both an individual
perspective and as a team. Both decisions that you take
individually, or decisions that are enforced by policy,
should be considered.

4 What approaches or considerations, do you, or your team,
take when aiming to identify potential risks or security
vulnerabilities when developing software? What is the
reasoning behind these decisions? You should consider
the decisions and thought processes behind selecting
certain tools (such as static analysis tools), as well as
identifying specific tools.

Note. Participants were asked to respond to these with either a written
response or to record an audio response. Participants were requested to
write for at least 4 min or speak for 2 min per question.

Figure 2
Survey Flow Representing the Presentation Order of Measures Given to Participants

Note. All participants received the same order of measures with randomization within the measures (detailed in
text where appropriate). OVT = Open Web Application Security Project vulnerability task; CRT = Cognitive
Reflection Test.
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favor of negative ratings from researchers, Consequently, small
deviations from the positive-positive ratings greatly affect the value
of Cohen’s κ. Since percentage of raw agreement is not reliant on
marginal distributions (von Eye & von Eye, 2008) we use this as a
preferred and complementary measure of interrater reliability.
To calculate κ and percentage agreements, confusion matrices

were constructed with the primary researcher’s ratings against the
combined ratings of the secondary researchers. As the secondary
researchers rated separate sections of the data, there was no
overlap between the words and so were combined. From this the
percentage of both parties identifying a word belonging to a topic
or not provided the interrater reliability. We report the raw
percentage agreements in Table 3 as it provides a coarse-grade
assessment of potential bias, and we provide the data and the
analysis code in the online repository at https://doi.org/10.17605/
OSF.IO/SJ8BT (Ivory et al., 2022), providing full transparency of
data reliability.
Following the reliability assessment, proportional variables were

then calculated through topic occurrence divided by word count,
creating the variable “proportion of uncertainty-related language”
(PURL), as well as proportion of computer science language. This
resulted in a value of topic proportion for each question per
participant.

Data Transformations

We used data transformations to prepare variables for suitable
analysis. We scaled continuous variables, CRT, OVT, Gambling
scores, PURL, and proportion of computer science language between
0 and 1. We transformed variables with substantially nonnormal
distributions to improve normality (see Table 4): OVT scores and
PURL scores (with values of zero removed—see the Analytic
Strategy section). These transformations are a deviation from our
preregistration, and for transparency, additional online materials are
available at https://doi.org/10.17605/OSF.IO/SJ8BT that detail the
reasons for requiring these transformations. In short, models that used
the untransformed data suffered violations of model assumptions and
were less effective than models that used the transformed data.

Analysis

Analysis was conducted in R (Version 4.1.0). Data, analysis
scripts, and instructions for reproducing the results seen in this
article can be found in the OSF repository here at https://doi.org/10
.17605/OSF.IO/SJ8BT.

Analytic Strategy

To address hypotheses one and two, a two-step model was
employed due to the zero-inflated nature of PURL induced through a
floor effect (i.e., not all responses used language around uncertainty).
The first step was a logistic mixed-effect regression model to
determine the existence of uncertainty-related language based on
other variables. The second step was a linear mixed-effect regression
model to understand the impact of cognition on PURL. For
addressing Hypothesis 3, a linear model was built to compare
vulnerability scores by cognitive reflection.

Mixed-effect models were used as these handle nested data
appropriately. As each participant provided four different text
responses, it is important to treat these as independent to each other,
but dependent on the participant. This allows for greater model fit,
and accounts for participant-level variation in PURL as well as at the
question level.

Results

Addressing Hypotheses 1 and 2: Individual
Differences in Risk and Reflection in Software

To test Hypotheses 1 (that generalizable risk perspectives increase
risk sensitivity) and 2 (that generalizable reflective decision-making
increases risk sensitivity), a two-step or hurdle model, was developed
to first identify the presence of uncertainty-related language, followed
by the second model for determining PURL, including risk aversion
(as operationalized through gambling task scores), and cognitive
reflection (operationalized through CRT scores). Hypothesis 1 is
assessed through the inclusion of the loss aversion scores in ensuing
models, and Hypothesis 2 is assessed through the inclusion of CRT
terms in the models.

In the two-step model, the first model represents a hurdle to be
passed, which determines whether uncertainty is reflected in the text.
If uncertainty is present and the hurdle is “cleared,” the second

Table 3
The Raw Percentage Agreement Between the Primary Researcher
and the Two Researchers Who Completed the Validation Task

Topic Agreement

Risk .87
Product .88
Workplace .86
Finance .91
Geographic .97
Legal .91
Shallow skills .94

Note. The two researchers both completed a separate 10% of the words
available and so were combined allowing for the creation of Cohen’s κ
between the primary researcher and the two researchers combined.
Agreement is calculated through the confusion matrix and is the sum of
both the primary and secondary researchers rating a word as true or false,
divided by the sum total of words.

Table 4
Transformation of Optimism Task and PURL Scores Toward a
Normal Distribution

Measure
Transform
power

Shapiro–Wilks p value

Original Updated Original Updated

OVT 1.425 .96 .98 .006 .036
PURL .05 .75 .99 <.001 .013

Note. Transform power is the optimal value identified through the
Shapiro–Wilks test provided through using Tukey ladder of powers. The
ladder applies a range of power transformations and reassesses the data for
heteroscedasticity. The values listed under the Shapiro–Wilks section
reflect the value before and after transformation, and the p value columns
show the pre- and postvalues from the Shapiro–Wilks test. OVT = Open
Web Application Security Project vulnerability task; PURL = proportion
of uncertainty-related language.
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model provides predictive power for PURL in the zero-truncated
data. Exploratory results that were not preregistered are included in
the additional online materials found on OSF.

Step 1

The first step was a binary mixed-effect logistic regression model
to identify the presence of uncertainty-related language. Not all
sentences written by participants included uncertainty, and so PURL
distribution was zero-dominated. This model presents the first
hurdle, and if the threshold of zero language is crossed, then data are
subject to the second step.
This model was developed using a forward-step approach starting

with the null model to model the existence of uncertainty language
within responses. For model refinement, outliers were identified
using Cook’s distance, which measures the influence specific
datapoints have over the model fit. Items with a value three times
greater than the mean of all the distances were flagged and removed.
The final model, with coefficients seen in Table 5, had an Akaike
information criterion of 2515.00, explained variance of R2

conditional =
.23 and correct classification of 68.13% of data.

Step 2

The second step focused on data containing PURL. This enabled a
mixed-effects linear regression model for predicting the amount of
PURL in a response. The dependent variable, PURL was zero-
truncated, assessed for normality, and transformed toward a more
normal distribution. Figure 3 shows the zero-truncated distribution,
and the subsequent transformed distribution. The nontransformed
zero-truncated data’s Shapiro–Wilks value = .75, p < .001, and the
transformed data,W = .99, p = .013. While still nonnormal, it is less
right-skewed than the untransformed data. Appendix provides
examples of how PURL manifested in responses.
Model building began with the null model with terms added

sequentially. A mixed-effect model was chosen due to the data’s
nested structure. Each independent datapoint indicated a sentence

nested within a response, which were nested under participants. For
this, a random intercept of participant was included, with a random
slope of question to allow for individual differences in language use.

Hat values were used to identify high leverage points, which are
datapoints that measure the distance from the observed and fitted
values, higher values indicate higher leverage, and we examined
values two times greater than the mean hat value. Little relationship
was seen, and removal provided negligible effect on the model.
Removing influential outliers through Cook’s distance had little
effect on the model and so all items were retained.

The final model can be seen in Table 6 and reports an R2
conditional of

.66. The absence of risk aversion scores in the final model indicates

Table 5
Model Coefficients of the Terms Used in the Modelling of the
Presence of Uncertainty-Related Language

Term β Significance

Intercept −1.35 ***
CS prop 8.39 ***
Question 2 1.91 ***
Question 3 1.84 ***
Question 4 0.96 ***
Question 2: CSprop −5.36 **
Question 3: CSprop −2.6
Question 4: CSprop −0.35
(1|participant)

Note. The beta value reflects the model coefficient and is given alongside
the significance of the term in the model. The terms relating to Questions
2, 3, and 4 are present through the inclusion of a categorical term of
question, this is included as the questions ask about different ideas, and
likely vary in frequency of PURL language. That is, the terms Questions
2, 3, and 4 represent the variability in the presence of these different
questions. The intercept represents the first question, and so the question
terms are interpreted in comparison to the first question, the model tells us
that for Questions 2, 3, and 4, their beta values are positive compared to
the first question indicating a higher likelihood of the presence of
uncertainty-related language. PURL = proportion of uncertainty-related
language; CSprop = proportion of Computer Science-related language.
*p < .05. **p < .01. ***p < .001.

Figure 3
Distribution of the PURL Scores Before and After Transformation Toward a Normal Distribution

Note. The contrasting plots provide a visualization of the difference in distribution made from the
transformations. PURL = proportion of uncertainty-related language.
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no support for Hypothesis 1, and the inclusion of both a CRT term
and CRT interaction with optimism supports Hypothesis 2. The
model effects are shown in Figure 4, which shows predicted PURL
levels for varying strengths of optimism bias. The figure shows a
distinct interaction between the optimism bias when measured
alongside cognitive reflection. The three levels of OVT presented
(low, neutral, and high) serve solely as a visualization aid and not
actual groupings made in the analysis. When cognitive reflection
was low, PURL was also low, however, as the more optimistic

participants increased in their reflection, they spoke more to
uncertainty when discussing software. Those displaying an average,
or pessimistic view on vulnerability, tended to speak more about
uncertainty intuitively, but cognitive reflection suppressed this
language, and in extreme pessimism suppressed language to similar
levels of the overly optimistic and intuitive.

Addressing Hypothesis 3

To test for the effects of optimism bias in software development,
first a simple linear regression compared OVT scores between
students (M = 16.72) and developers (M = 18.10) which was found
to be nonsignificant, F(1, 139) = .12, p = .727, R2

adjusted = −.01. To
test whether software engineers demonstrate a general optimism
bias to vulnerability inclusions, a one-sample t test was conducted
against a true mean of 0. It was found that the mean score calculated
across both developers and CS students, 17.40, 95% CI [13.51,
21.28], was significantly different from an average of zero, t(140) =
8.86, p < .001.

To test Hypothesis 3, a linear regression model was used to predict
OVT scores using both CRT measures. A series of models were built
to identify the most parsimonious model using Akaike information
criterion as the suitability criterion. No model was constructed that
provided a significantly better fit than the null model, indicating no
strong relationship between OVT scores and cognitive reflection
scores. Consequently, we do not reject Hypothesis 3’s null hypothesis
that there is no relationship between OVT scores and CRT.

Discussion

We asked whether domain-general, psychological measures of
cognitive reflection, risk aversion, alongside optimism bias for
security vulnerabilities would predict how software engineers talk
about risk perception when discussing their software security.
Using data collected from freelance software developers and CS
students, we analyzed PURL through a mixed-effects hurdle model,
The key finding was an interaction between cognitive reflection
and unrealistic optimism for PURL. Also, engineers were typically
overly = optimistic about personal susceptibility toward security
vulnerabilities. Meanwhile, risk aversion was not a strong indicator
of PURL, nor did we find a systematic relationship between
cognitive reflection and optimism.

Answering the Call for Increased Psychology in
Software Engineering Research

This article answers calls for increased psychology-based
research in software development (Acar et al., 2016; Capretz &
Ahmed, 2018) by showing that software engineers are subject to the
same cognitive constraints as nonengineers. The language used by
engineers talking about secure coding can be usefully framed with
respect to dual-processing theory.

Additionally, a systematic review (Mohanani et al., 2020) within
software engineering points toward the breadth of biases affecting
software (Fagerholm et al., 2022; Ralph, 2011). Our quantitative, data-
driven study extends the understanding of heuristics and biases for
secure software.Moreover, the present study underscores the potential
for different cognitive constructs to interact in the software domain,
revealing the complexity of how heuristics can shape software risk.

Table 6
Chosen Model for the Second Step Model Using Zero-Truncated
PURL as a Dependent Variable

Term β Variance Significance

Intercept 0.91 ***
CRT −0.04 **
OVT −0.04 *
CRT × OVT 0.07 *
Question 2 0.01 ***
Question 3 0.01 ***
Question 4 0.02 ***
Random (Question 1) .0006
Random (Question 2) .0006
Random (Question 3) .0006
Random (Question 4) .0006

Note. The terms listed are those present in the model for determining PURL
in responses, with coefficient values listed in the beta column, along with
confidence intervals in the CI column. The variance for the random effects is
given providing a value for how much variation these terms provide and
finally, the significance of each term for the model is given. The terms relating
to the Questions 2, 3, and 4 are present through the inclusion of a categorical
term of question, this is included as the questions ask about different ideas, and
likely vary in frequency of PURL language. OVT = Open Web Application
Security Project vulnerability task; PURL = proportion of uncertainty-related
language; CRT = Cognitive Reflection Test; CI = confidence interval.
*p < .05. **p < .01. ***p < .001.

Figure 4
Interaction Plot Between CRT Score (the Propensity for Reflective
Thinking) OVT Score (Optimism Bias) and Model Predicted Values

Note. To provide easier interpretation of the interaction, the plot presents
three “groups”—of low, neutral, and high OVT scores. In reality, this
grouping does not exist and is a continuum, but the grouping represents the
extremes effectively. OVT = Open Web Application Security Project
vulnerability task; PURL = proportion of uncertainty-related language;
CRT = Cognitive Reflection Test.
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Risk Aversion

Prospect theory proposes that people are more sensitive to losses
over gains (Frederick, 2005; Kahneman & Tversky, 1979). As a
group, software engineers show this asymmetry too, yet we did not
find evidence to support Hypothesis 1 that greater risk aversion
would associate with greater risk sensitivity in language. There are
two interpretations we present that may explain this finding.
One interpretation is that engineers do not systematically frame

security decisions in terms of gains or losses. Software security is
often made up of smaller, independent decisions, each with their
own framing and outcome value. Typically, software engineers
perceive security as a barrier (Lopez et al., 2022), or lower priority
than functionality (Lopez, Sharp, et al., 2019), but this may not
translate well into mental models of software, meaning that security
is poorly considered in terms of risk aversion. It could also be
interpreted that risk aversion is unrelated to risk taking behavior as
there are other factors that determine the behavior. In economic
research, it is seen that low risk aversion can lead to riskier trading
decisions (Hoffmann et al., 2015), which contrasts with our
expected findings. Further research and a better understanding of the
link between software developers’ language and risk behavior is
warranted to better understand this finding.

Cognitive Reflection

The lack of evidence for a direct relationship between CRT and
risk sensitivity might reflect (a) the study design, (b) the lack of
sensitivity of CRT to capture relevant individual differences, or (c) a
more complex relationship than a bivariate link. We believe the
evidence points to (c) because we obtained an interaction between
CRT and optimism for risk sensitivity. Moreover, this interaction
negates the likelihood that (a) or (b) are wholly satisfactory.
The implication is that the specific simple and direct relationship

between cognitive reflection and uncertainty language is weak, and a
software engineer’s ability to reflect on decisions does not manifest
in the language used concerning security. Fine-tuning either—or
both—of these constructs might enable stronger evidence to emerge
of their link. However, we did find an indirect relationship between
CRT cognitive reflection and risk sensitivity in language, one that
supports the broad thrust of the initial prediction.

Optimism

Experienced freelancers and CS students collectively demon-
strated a significantly greater optimistic belief in their own secure
coding behaviors (see Rhee et al., 2012; Weinstein, 1980) with
no noticeable differences between the populations. Measuring
unrealistic optimism can serve as a proxy of System 1 processing,
as the presence of one bias indicates an increased likelihood of
other biases being present too (Ralph, 2011). Insofar as both
developers and CS students reported similar levels of optimism, the
present research supports the findings of Oliveira et al. (2018) and
Brun et al. (2022) that experience does not reduce susceptibility in
biases in vulnerability detection.
Observing optimism bias in both new and experienced software

engineers reinforces our conclusion that this is an intuitive, instinctive
perception. It is neither simply a naïve aspiration nor a survivor bias.

Interaction: Cognitive Reflection and Optimism

The second step in the hurdle model focused on relationships
between cognition and risk sensitivity. The key finding was an
interaction between cognitive reflection and optimism that provided
predictive power for uncertainty-related language. Those who
displayed high optimism spoke less frequently about uncertainty,
but as cognitive reflection increased, so did uncertainty. Conversely,
pessimistic software engineers frequently mentioned uncertainty,
but decreased in uncertainty as cognitive reflection increased. In
other words, the way that engineers talk about uncertainty and
security is dependent on multiple facets of cognition. This provides
some support for Hypothesis 2 but not in its entirety.

The finding that cognitive reflection or optimism alone explain
very little variance in security perceptions highlights the entangled
nature of cognition in the real-world. Despite cognitive reflection
and optimism being two clearly defined measures of cognition
within the psychological literature, in data collected from a complex
domain, we see that these aspects of cognition are linked and cannot
be considered totally modular.

Those naturally optimistic about security, and who deploy
System 1 thinking, are less likely to discuss uncertainty—perhaps
because it is not seen as an issue. Indeed, Assal and Chiasson (2018)
found that overly optimistic software engineers view additional
security implementation as holding minimal value, as they believe
their current level of security to be sufficient. When considering
security, therefore, they may require stronger cues or framing to
activate System 2 when making security decisions. Meanwhile,
those naturally pessimistic about security, talked more about
uncertainty and here System 2 thinking is associated with increased
uncertainty (Siegrist et al., 2005).

Reduced self-confidence may mean engineers feel overwhelmed
when presented with security decisions, which is not helped by a
lack of documentation supporting their choices (Acar et al., 2017) or
lone working environments (van der Linden et al., 2020). By
activating System 2 processing and thinking critically about security
decisions, the naturally pessimistic may find increased confidence
in their abilities to code securely. One catalyst for System 2 thinking
during secure decision making might be peer communication
(Shreeve et al., 2022), which allows for the balancing of
perspectives and a reduction of biases. Both examples of the
naturally optimistic and pessimistic aligns with the dual-processing
theory (Evans, 2003), suggesting that software engineers who can
easily activate System 2 processing will experience reduced biased
judgment during secure decision making.

A practical ramification of this interaction is that discussions
within development teams may help to improve security decisions.
While developers working alone do not have access to such support,
engagement with interactive websites—such as Stack Overflow—
can provide a digital community to engage with (Lopez, Tun, et al.,
2019) beyond a simple question-and-answer format. Encouraging
developers to interact even asynchronously can potentially provide a
community that motivates more reflective thinking. Developing an
understanding of how social identity affects these communities and
increases engagement between peers can help on this front.

Rewarding Secure Behaviors

Our findings have implications for how software engineer
freelancers (as the focus of this research) are rewarded for practicing
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secure coding. The implications are also relevant for engineers
working in more permanent roles within a company. Rewards can be
used as an incentive to encourage certain behaviors and reduce
unwanted ones. Rewards can be intrinsic or extrinsic; intrinsic
rewards are those internal to the individual and are inherently found
in the task itself and upon completion, and extrinsic rewards are
external to the task, such as pay or recognition (Ajila & Abiola,
2004).
Intrinsic rewards can boost task performance with motivation also

playing a mediating role (Manzoor et al., 2021). Intrinsic rewards
can stem from expressions of appreciations by senior employees
or promotions based on work quality, and so in nonfreelance
engineering roles, this is easily managed by ensuring that employees
are recognized for their secure coding practices. Motivation for
accuracy or quality can lead to a greater expenditure of cognitive
effort (Kunda, 1990), and these motivations can be achieved through
an expectation to defend or explain one’s decisions (Tetlock &
Kim, 1987).
Extrinsic rewards are not as straightforward for freelance engineers

as they can be for contracted engineers, as the companies may be less
inclined to provide incentives for secure code if they do not see
freelancers as part of the company. One way to provide an extrinsic
reward is through the recruitment platforms that they use. If
freelancers can be publicly recognized for their secure coding
practices in the previous work, this may be seen as a potential reward
for quality work as it boosts their profile, increasing potential work
offers. The exact nature of verifying secure coding practices on
freelance platforms is beyond the scope of this article, but if a system
can be devised that is universally trusted and easily implementable,
then the use of gamification may work as a reward system.
Gamificationmethods have been shown to have long-term behavioral
effects (Hamari, 2017), but gamification should be done with caution
as not all findings support their efficacy (Barreto & França, 2021). If
badges are perceived by platform-users meaningful and trusted, these
may act as a reward system that can be used for freelancers.
The use of rewards, either intrinsic or extrinsic, for encouraging

secure coding behaviors can be used to increase motivation and
subsequently increase task performance. In a secure coding specific
context, by rewarding secure behaviors, this can be linked to greater
cognitive engagement, and through the dual-processing theory, lead
to reduced bias interference. In the interaction seen between
cognitive reflection and optimism, by increasing the likelihood of
engaged System 2 processing, clients, stakeholders, and employees
can focus on managing optimism rather than juggling two aspects of
cognition at a time.

A Comparison Between Professionals and Students

The finding that population was not a significant term in the
modeling process supports the assumptions of our key take-home
message, that the data offer credibility for using CS samples in
future research in place of professional developers.
The persistence of biases and similar approaches to uncertainty

around security implies these are general and widespread character-
istics, rather than something unique to students that is modified by
experience. This signals that psychological interventionsmay have an
effect across the software engineering domain, and not limited to
inexperienced or early stage developers. It also shows that individuals
who may be predisposed toward more intuitive, impulsive modes of

decision making are not impervious to learning, or seeking support
from their work environment to ensure that they make appropriate
choices at key points during projects.

Acknowledging that professional developer populations can be
harder to access, easier access to a population whose only significant
difference is experience provides momentum to further research
projects. CS students provide an alternative, cheaper, and easier way
to explore hypotheses before confirming findings in professional
developers.

Insofar as we proposed novel quantitative hypotheses that
addressed general psychological constructs, we have no specific
reason to expect that participant diversity (e.g., with respect to the
age, gender, and location) would affect performance. Moreover,
the profile of these variables broadly corresponds with those of the
community—most of our participants were aged 18 and 35 for both
groups, which aligns with the Stack Overflow 2022 (https://survey
.stackoverflow.co/2022) results that reported over 63% of respon-
dents were aged between 18 and 34. Similarly, the gender split
reported by our sample was 74% male compared to Stack
Overflow’s reported 92% male audience. This indicates either a
potential shift in the future gender split of software developers, with
more female developers currently learning to develop software, or it
reflects a potential gender split in survey response propensity with
more females choosing to participate in nonstandard freelance work
offers. The sample was globally distributed representing the global,
diverse nature of software development.

Reflecting on Heuristics

Our research is built upon the theoretical foundations of dual-
processing theory and heuristics. We define heuristics as “mental
shortcuts” that can be used in multiple scenarios to simplify and
speedup decisions (Beike & Sherman, 1994), but when heuristics do
not provide appropriate decisions for certain contexts, then they
become biases (Gigerenzer, 2015; Kahneman et al., 1974).

Two main schools of heuristics exist, both of which share
commonalities but deviate on other aspects. For a more comprehen-
sive discussion over the major differences, the reader is referred to
Hjeij and Vilks (2023) and Samuels et al. (2012). The first school of
thought is that proposed by Daniel Kahneman and Amos Tversky in
the 1970s (Kahneman et al., 1974), who posit that heuristics are
evolutionary mechanisms that use generalizations or rules-of-thumb
to reduce cognitive load. They suggest that while they help us make
quick decisions, they are often inaccurate. More importantly, we use
heuristics even when there is little guarantee they will produce a
correct answer. In short, Kahneman and Tversky suggest that human
decision making is largely irrational.

The second school is that of bounded rationality started by
Herbert Simon and continued by Gigerenzer (2015). One of the
main contributions is the adaptive toolbox which defines heuristics
as efficient processes which ignore information in favor of speed,
but with one significant difference, that these heuristics are often
ecologically rational and can provide answers that are nearly, or
as-good as optimized decision-making mechanisms. Part of
Gigerenzer’s toolbox was the concept of fast and frugal heuristics,
where less information is more (Gigerenzer, 2008).

The difference between the two schools can be distilled into a
difference in research focus. Kahneman and Tversky examined
the decisions that people make (Kahneman & Klein, 2009),
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whereas Gigerenzer examines cognitive mechanisms (Gigerenzer &
Gaissmaier, 2011). Both agree that if a heuristic is ill-fitted to
the context, then they are biased and can be considered irrational.
In our present research, we are examining the context of secure
coding, for which no heuristic has evolved to handle (Oliveira et al.,
2018), and so whether you subscribe primarily to Kahneman and
Tversky’s definition of heuristics, or Gigerenzer’s, both approaches
support the idea that in this context, intuitive, heuristic-based
decisions are likely to produce incorrect and irrational decisions.

Limitations

In this section, we draw attention to two domains of limitations:
internal validity in terms of sampling and statistics, and external
validity in terms of construct accuracy.
With respect to the former, we recognize that the work draws on

self-reports of risk. We knew that asking participants about their
experiences with developing software in the context of risk and
uncertainty might prime security. All participants completed the
same survey, and any priming effect would be across all participants.
A different issue is that some participants responded to question
prompts in a superficial or terse way. We asked respondents to write
for at least 4 min or speak for 2 min per each qualitative, text-
response question. Yet some responses were only three words long,
limiting data quality. Typically, when this occurred, it was across
all a participant’s text responses rather than specific questions.
Drawing on a freelance online marketplace, we may have recruited
participants who are focused on completing tasks quickly to
maximize their hourly pay. Our preregistered sampling strategy was
designed tomitigate data quality differences, proportions of language
were used to ensure a relative association between response length
and topic frequencies, and only responses longer than 20 words
were analyzed. Nonetheless, further work that elicits richer data
would be useful.
In the statistical (hurdle) model, the second step produced

increased residuals in predicting high PURL, due to scarcer
datapoints in the higher ranges. This could be a signal of a violation
to the underlying distribution, however, Schielzeth et al. (2020)
concluded mixed-effects models are relatively robust to such issues.
We suggest this remains an appropriate analytic device, while
welcoming any opportunity to complement these findings with
convergent statistical approaches.
To measure optimism, we used a novel, software developer

specific task, the OVT. The intention was to measure relative
optimismbetween an individual and the “average” developer. Official
statistics for the percentage of software applications suffering
from specific OWASP vulnerabilities do not exist and so an
absolute measure of optimism is unobtainable. By measuring relative
optimism, we elicit information on domain-specific security concepts.
The measure consists of two sections, one about personal risk and the
other of the average developer. This was presented to participants in a
fixed order which is like previous work using self-reported ratings of
confidence (De Neys et al., 2013; Frederick, 2005; Hoover & Healy,
2019). Simplicity was valued and took research precedence in this
regard, though of course it remains an open question as to whether
different responses could be obtained through alternating section
presentation. Note that a mixed order would have required additional
model analytic terms, potentially resulting in overfitting, as well as
reducing the analytic focus on the other cognitive measures.

Many studies have used CRT to understand individual differences
in cognition. The first of two recurrent concerns is the extent to
which performance is confounded by numerical ability, Although
CRT associates strongly with numeracy (Liberali et al., 2012;
Sinayev & Peters, 2015; Welsh et al., 2013), CRT responses have
been shown to measure more than numeracy alone, as people tend
to respond with a predictable intuitive and incorrect response
(Pennycook & Ross, 2016). A second concern is interpretive; the
attribution substitution hypothesis suggests that when using System
1 processing individuals unconsciously substitute complex deci-
sions with computationally simpler ones (Hoover & Healy, 2019,
2021; Kahneman & Frederick, 2002). For our purposes, however,
we simply note that showing the systematicity of the association
between CRT scores and software cognition is the key first step.
Disentangling the nuances of how conscious system switching or
question framing might affect conceptual interpretation—of specific
CRT questions—is left for more detailed enquiry.

Future Work

Our future researchwill extend beyond the research described here,
by leveraging preexisting paradigms (Brun et al., 2022) for measuring
blindspots within application programming interfaces. By using a
paradigm that reflects real-world scenarios, involving code reviews
with insecure elements, measures of developers’ actions can be taken
to associate with cognition. Previous work using this paradigm
has not fully explored the relationships with heuristics and dual-
processing theory which we anticipate being able to draw clear
connections between. This will further evidence the need to examine
software security through the lens of psychology to better understand
the effect of cognition and individual differences in secure software
development.

Conclusion

Understanding how software engineers talk about risk and
security in software is important as it provides insight into how they
approach software development. The main finding from this study is
that an interaction between cognitive reflection and optimism goes
someway to explain risk sensitivity in language used by engineers
when discussing software development, risk, and security. It was
also seen that software developers and CS do not differ significantly
in their approaches to security and risk. Additionally, software
developers and CS both exhibit optimistic perceptions on their
likelihood to include vulnerabilities in their own software. Future
research should expand upon this work by performing similar
measures alongside software development tasks.
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Appendix

Examples of Sentences and Their Transformed PURL Score

Subject ID PURL Sentence Keywords

01 .00 I was assigned a project to handle a drinks factory day-to-day purchases, sales,
and employee records three months ago.

N/A

89 .24 The main considerations I take when aiming to identify potential risks or security
vulnerabilities when developing software are to consider the ways in which
information could be compromised.

Risks, security, compromised

126 .35 Where personal experience is not available, I would regularly visit a risk
assessment template throughout the development process and ensure that
potential risks are regularly identified during the development lifecycle.

Risk, risks

09 .58 Good decisions always make software development smooth and secure, team lead
would be a big factor, his ideas and decisions matters most

Decision, secure, decisions

143 .75 I would say that user data collected from already existing secured software will
provide additional protection from risks, such as Gmail, bank accounts, and
other similar places where there is already an existed security.

Secured, protection, risks, security

Note. PURL = proportion of uncertainty-related language; ID = identification number; N/A = not applicable.
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