
The 34th Canadian Conference on Artificial Intelligence

PyFed: extending PySyft with N-IID Federated Learning
Benchmark

Houda Bouraqqadi†, Ayoub Berrag†, Mohamed Mhaouach†, Afaf Bouhoute†,*, Khalid Fardousse†,
Ismail Berrada†

† Sidi Mohamed Ben Abdellah University, Faculty of Science, Fez, Morocco
‡ Mohammed VI Polytechnic University, Benguerir, Morocco

*afaf.bouhoute@usmba.ac.ma

Abstract
Federated Learning (FL) is an emerging learning paradigm that enables collaborative

model training, across multiple devices using decentralized data, allowing each device
to keep the privacy of its local data. Heterogeneity of data distributions is an inherent
characteristic of FL. Generally, data samples across user devices are Not-Independent
and Identically Distributed (N-IID), making learning in federated settings a challenging
task. In this paper, we aim to contribute to FL benchmarking by introducing PyFed, an
open source and scalable simulation framework of federated settings, supporting N-IID
data. PyFed is fully compatible with PySyft, the secure and private framework for deep
learning. It includes a set of benchmark datasets and implements different types of N-
IID data distributions. PyFed also provides a set of implementations that can be used
as reference for FL development.
Keywords: Federated Learning, N-IID, PySyft

This article is © 2021 by author(s) as listed above. The article is licensed under a Creative Commons
Attribution (CC BY 4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode),
except where otherwise indicated with respect to particular material included in the article. The article
should be attributed to the author(s) identified above.

1. Introduction

The recent years have witnessed an increase in the number of intelligent personal devices
(e.g., smartphones, wearable devices), resulting in a rapid growth of data [1]. The exponen-
tial rate of data generated by devices has boosted the application of machine learning models
for developing more intelligent and predictive applications. Traditionally, these applications
use central data centers to which user data are transferred for processing and model train-
ing. This centralized architecture has many downsides: transferring large data from user
devices to the data center limits real-time learning and raises privacy issues. To address
these challenges, Federated Learning (FL) has emerged [2–5]. It is a machine learning par-
adigm that allows collaborative model training across multiple devices using decentralized
data. Formally speaking, the FL optimization problem can be defined as the minimization
of the following empirical risk, where w is the model parameter, N is the number of client
devices holding their local data samples, Pk is the set of data sample indices on client k,
nk = |Pk| is the number of data samples, n =

∑N
k=1 nk is the total number of data samples,

and fi is the local loss function.

min
w∈Rd

f(w) = min
w∈Rd

(

N∑
k=1

nk

n
Fk(w)) with Fk(w) =

1

nk

∑
i∈Pk

fi(w)

One of the core challenges of FL is to manage the heterogeneity of data distributions
among devices [6, 7]. Typically, data samples across user devices are Not-Independent and
Identically Distributed (N-IID), which can affect the convergence of FL. To support the
development of FL, multiple frameworks and libraries have been developed among which
we mention PySyft [8]. In fact, most existing benchmarks ([9–13]) lack of standardized FL
algorithm implementations and support of diverse FL configurations, making comparing
performance in various cases of N-IID data a difficult task [14].

2

In this paper, we aim to address the lack of benchmarking frameworks especially those
dealing with N-IID data, by extending the popular library PySyft, with PyFed an FL
benchmarking suite. PyFed assembles five representative datasets and implements various
N-IID data types and aggregation methods. A comparison of PyFed and other existing FL
benchmarks is presented in Table 1. The main contributions of the paper are:
• An extension of the widely used PySyft library to support FL benchmarking, focusing

especially on the N-IID challenge.
• An extensive evaluation of some solutions for dealing with N-IID data, using five famous

datasets.

Table 1. Comparison of federated learning Benchmarks

Name Various ML models Various datasets N-IID types simulation Handling N-IID datasets
LEAF [9] 3 3 7 7

Street Image [11] 3 7 7 7

Edge AIBench [12] 3 3 7 7

OARF [10] 3 3 7 7

Liu et al [13] 7 7 3 7

PyFed (our work) 3 3 3 3

The remainder of this paper is organized as follows. Section 2 presents the methodology
of the proposed benchmarking framework PyFed. Section 3 presents the performed experi-
ments and discusses the results. Section 4 concludes the paper and gives some perspectives.

2. PyFed Methodology

2.1. N-IID data

In real world scenarios, data can be N-IID in several ways [6, 13, 14]. Let us assume that,
for a learning task T , the feature set is x, the labels are y, and Pi is the data distribution
of the client i. Thus, the taxonomy of the N-IID data regimes that can arise for any client
partitioned dataset, can be classified into various classes:
• Covariate shift: the marginal distributions Pi(x) may vary across clients, even if Pi(y|x) =

Pj(y|x), for all clients i and j.
• Prior probability shift: the marginal distributions Pi(y) may vary across clients, even if

Pi(x|y) = Pj(x|y), for all clients i and j.
• Concept shift:

(1) Same label, different features: the conditional distribution Pi(x|y) may vary across
clients even if even if Pi(x) = Pj(x), for all clients i and j.

(2) Same features, different label: the conditional distribution P (y|x) may vary across
clients even if even if Pi(y) = Pj(y), for all clients i and j.

• Unbalancedness: the amounts of local data held by clients may differ considerably.
• Inter and intra-partition correlation: data across multiple client devices can be corre-

lated, or different partitions of the data of one client are dependent.

2.2. PyFed Architecture

As illustrated in Figure 1, PyFed adopts a modular architecture, interfacing well-known
datasets, supporting IID and N-IID data distributions and establishing a methodology for
model evaluation and result reproduction. PyFed also extends PySyft by adding additional
modules to support N-IID data. The main modules of PyFed are presented below. More
details about the package contents are available on the PyFed github [15].

3

Figure 1. PyFed Overview.

Datasets. This module includes the datasets and their respective pre-processing scripts. It
also contains additional scripts (data loader) for loading and splitting the data. Currently,
PyFed includes five datasets, for both image and text classification: CIFAR10 [16], MNIST
[17], Fashion-MNIST [18], Sentiment140 [19], Shakespeare [20].
Data splitting. N-IID data is simulated into 4 types, according to the configurations men-
tioned above, categorized in two categories, namely random split and label split. Note that,
a multitude of options/parameters allow customising the split of these two categories.
• Random split (unbalancedness). In this class split, we distribute the samples of

the dataset randomly, so the workers (data holders) may (not) have all classes but with
different distributions.

• Split by label (covariate and concept shifts). This N-IID split is based on labels,
so we can specify the different classes that each worker will have. We define 3 types
depending on how the workers with the same classes will share the samples.
(1) Type 0: The workers that have the same labels, share also the same samples.
(2) Type 1: The workers share the samples of the same class randomly.
(3) Type 2: The workers do not share any samples of the same class, i.e even if two

workers have the same class, they will never share the same samples.
Models. The module implements the ML classification models. Given the specificity of
the datasets, the following neural networks were implemented: Convolutional Neural Net-
works (CNN) for image datasets and Recurrent Networks (GRU) for text datasets. The
module also includes a sub-package named "metrics", which contains the main used metrics
(Accuracy, Loss and Micro/Macro average), as well as a notebook for result visualization.
Aggregation. This module includes the aggregation methods for FL. PyFed implements
the most popular FL aggregation algorithms "FedAvg" [4].
Utils. This module contains a collection of general-purpose utility functions, including those
for experiment set up. Experiments can be configured by assigning additional arguments,
either manually in the command line or by using a YAML configuration file.
Run. This module contains scripts for starting the workers and the training process.

3. Experiments

3.1. Experimental Setup

We implement 3 different neural networks depending on the datasets and the ML task:
CNNs for image classification and LSTM/GRU for text classification. Details of the model
architectures for each dataset can be found [15]. For each dataset, the training data was
distributed to K=100 clients, while the testing data was kept for performance evaluation.
The fraction of data and labels held by each client was randomly determined and is set

4

in the configuration files. The training data is split among the clients in IID and N-IID
settings. N-IID data partitions are created by splitting the datasets randomly and by label.
Different types of partitioning using labels are considered, depending on whether the clients
holding the same classes share or not the same samples. In each round of FL, the fraction
of participating clients is set to C = 0.1 to select a maximum of K × C = 10 clients.

Table 2. Benchmark Results for IID distributions (baseline)

Datasets CIFAR10 Fashion-MNIST MNIST Sent140 Shakespeare
Model CNN CNN CNN CNN batch LSTM GRU

Accuracy 67 86.81 95.63 96.33 65.45 50.36
Loss 0.8043 0.368 0.1384 0.1154 0.8345 1.2452

Table 3. Benchmark results for N-IID distributions

Dataset Model
N-IID (Label split) N-IID (Random split)Type 0 Type 1 Type 2

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss
CIFAR10 CNN 66.78 0.8132 65.89 0.8453 65.45 0.8464 66.89 0.8121
Fashion-MNIST CNN 85.36 0.4029 85.8 0.3956 85.42 0.4009 86.57 0.3727

MNIST CNN 93.45 0.2171 93.88 0.2164 93.84 0.2086 95.04 0.1671
CNN(with BN) 94.25 0.1902 94.74 0.1771 94.76 0.1884 96.09 0.13

Sent140 LSTM 64.4 0.9244 64.23 0.9445 65.78 0.8123 65.1 0.8663
Shakespeare GRU 48.26 1.3452 48.76 1.2052 45.23 1.7452 49.46 1.2952

3.2. Results and Discussion

The main results with the IID setting are presented in Table 2. The results show high
classification accuracy scores achieved on MNIST and Fashion-MNIST datasets and average
accuracy scores on CIFAR10, Sent140 and Shakespeare. These results will serve as a baseline
to which the N-IID results will be compared. The results for N-IID settings are presented
in Table 3. In accordance with the existing works, the results show limited performance
with the N-IID setting compared to the results obtained with the IID setting. Similar
performance is achieved by all three types of N-IID data splits with a slight improvement in
the random split. Some of the obtained results are also illustrated using the accuracy and
loss curves for the MNIST and Fashion-MNIST datasets (Figure 2 and Figure 3).

(a) Test accuracy (b) Test loss

Figure 2. Test accuracy and loss graphs for MNIST dataset

These latter show the improvement of the test accuracy/loss after each round. Comparing
the plots of the different data distributions on MNIST (Figure 2), we figure out that,
compared to IID and random split, the accuracy with the split by label types starts with
lower accuracy but converges to the same values after 10 rounds. Slower improvement
is noticed when clients share the same class’s samples randomly (the red curve in Figure
2). On the other hand, the improvement was faster with the split of type 0, where the

5

same samples are shared among clients having the same classes. The test accuracy/loss
curves for the Fashion-MNIST are illustrated in Fig.3. Compared to MNIST, we notice
that accuracy/loss evolution for Fashion-MNIST over rounds is more stable for all types
of data splits. Convergence was achieved after 90 rounds. Figure 4 compares the micro
average train and test losses for the two datasets.

(a) Test accuracy (b) Test loss

Figure 3. Test accuracy and loss graphs for Fashion-MNIST dataset

(a) MNIST Micro average Loss (b) Fashion-MNIST Micro average Loss

Figure 4. Micro average losses for MNIST and Fashion-MNIST datasets

As indicated in Section 2.2, one way to cope with N-IID data is to share a small set of IID
data among clients (global dataset) [7]. Considering the poor performance achieved with
studied datasets, we choose to implement this strategy with the Shakespeare dataset. Adding
the global dataset increased the client data by 15%. The obtained results are presented in
Table 4. Consistently with the results of [7], the classification accuracy was improved by up
4.66%.

Table 4. Accuracy values of GRU on SHAKESPEARE before and after add global
dataset

N-IID type Accuracy% Accuracy (add global dataset) Improvement rate
Random split 49,46 51,45 1,99

Split by label type 0 48,26 50,79 2,53
Split by label type 1 48,76 50,12 1,36
Split by label type 2 45,23 49,89 4,66

6

4. Conclusion

In this paper, we introduce PyFed a simulation framework for federated settings, devel-
oped based on the most widely used deep learning library PySyft. PyFed provides a set of
datasets, implementations of ML models and various way of N-IID data splitting. Various
experiments were carried out with our proposed framework, using IID and N-IDD data (3
types of data splits were simulated), different datasets and ML models. Moreover, one of
the existing methods to handle N-IID data was implemented and the results were matched.
As future work, we aim to expand our framework by adding other aggregation methods.

References

[1] Data volume of internet of things (IoT) connections worldwide. https://www.statista.com/
statistics/1017863/worldwide-iot-connecteddevices-data-size/. Accessed: 2021-02-
17.

[2] J. Konečnỳ, B. McMahan, and D. Ramage. “Federated optimization: Distributed optimization
beyond the datacenter”. In: arXiv preprint arXiv:1511.03575 (2015).

[3] B. McMahan and D. Ramage. “Federated learning: Collaborative machine learning without
centralized training data”. In: Google Research Blog 3 (2017).

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. “Communication-
efficient learning of deep networks from decentralized data”. In: Artificial Intelligence and
Statistics. PMLR. 2017, pp. 1273–1282.

[5] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas. “Federated learning of deep
networks using model averaging”. In: arXiv preprint arXiv:1602.05629 (2016).

[6] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al. “Advances and open problems in federated
learning”. In: arXiv preprint arXiv:1912.04977 (2019).

[7] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra. “Federated learning with non-iid
data”. In: arXiv preprint arXiv:1806.00582 (2018).

[8] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and J. Passerat-Palmbach.
“A generic framework for privacy preserving deep learning”. In: arXiv preprint arXiv:1811.04017
(2018).

[9] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith, and A.
Talwalkar. “Leaf: A benchmark for federated settings”. In: arXiv preprint arXiv:1812.01097
(2018).

[10] S. Hu, Y. Li, X. Liu, Q. Li, Z. Wu, and B. He. The OARF Benchmark Suite: Characterization
and Implications for Federated Learning Systems. 2020. arXiv: 2006.07856 [cs.LG].

[11] J. Luo, X. Wu, Y. Luo, A. Huang, Y. Huang, Y. Liu, and Q. Yang. “Real-world image datasets
for federated learning”. In: arXiv preprint arXiv:1910.11089 (2019).

[12] T. Hao, Y. Huang, X. Wen, W. Gao, F. Zhang, C. Zheng, L. Wang, H. Ye, K. Hwang, Z. Ren,
et al. “Edge AIBench: towards comprehensive end-to-end edge computing benchmarking”.
In: International Symposium on Benchmarking, Measuring and Optimization. Springer. 2018,
pp. 23–30.

[13] L. Liu, F. Zhang, J. Xiao, and C. Wu. “Evaluation Framework For Large-scale Federated
Learning”. In: arXiv preprint arXiv:2003.01575 (2020).

[14] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons. “The non-iid data quagmire of decen-
tralized machine learning”. In: International Conference on Machine Learning. PMLR. 2020,
pp. 4387–4398.

[15] PyFed library. https://github.com/okazaki0/PyFed. Accessed: 2021-02-17.
[16] A. Krizhevsky et al. “Learning multiple layers of features from tiny images”. In: (2009).
[17] Y. LeCun. “The MNIST database of handwritten digits”. In: http://yann. lecun. com/exdb/mnist/

(1998).
[18] H. Xiao, K. Rasul, and R. Vollgraf. “Fashion-mnist: a novel image dataset for benchmarking

machine learning algorithms”. In: arXiv preprint arXiv:1708.07747 (2017).
[19] A. Go, R. Bhayani, and L. Huang. “Twitter sentiment classification using distant supervision”.

In: CS224N project report, Stanford 1.12 (2009), p. 2009.
[20] William Shakespeare. The Complete Works of William Shakespeare. http://www.gutenberg.

org/ebooks/100. Accessed: 2021-02-17.

https://www.statista.com/statistics/1017863/worldwide-iot-connecteddevices-data-size/
https://www.statista.com/statistics/1017863/worldwide-iot-connecteddevices-data-size/
https://arxiv.org/abs/2006.07856
https://github.com/okazaki0/PyFed
http://www.gutenberg.org/ebooks/100
http://www.gutenberg.org/ebooks/100

	1. Introduction
	2. PyFed Methodology
	2.1. N-IID data
	2.2. PyFed Architecture

	3. Experiments
	3.1. Experimental Setup
	3.2. Results and Discussion

	4. Conclusion
	References
	References

