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Abstract
Retailers rely heavily on product matching to better serve their customers, and to

improve their modelling and forecasting. Product matching refers to the process of iden-
tifying similar or identical products across different data sources. This is a challenging
problem as standardized unique identifiers are not used consistently across retailers, and
product descriptions and characteristics vary across data collections. In this paper we
present and discuss lessons learned from product matching in a real world application.
We propose an evaluation framework where we investigate and compare the use of tradi-
tional machine learning methods and deep learning methods on public and proprietary
datasets for product matching. Our findings show that traditional machine learning
methods perform well on this task and a practitioner should investigate these methods
first.
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1. Introduction

The number of products sold by modern retailers has experienced tremendous growth,
with marketplaces such as Amazon carrying millions of distinct products. With this ever
increasing number of products, the methods to search and compare products have by neces-
sity become increasingly sophisticated. Product matching, the process by which differing
product records are identified as referring to the same real-world product, is at the heart of
many of these tools. Product matching has enabled consumers to easily browse offers from
different merchants for the same product through a single interface. It has also been used
to create high-quality product catalogues, usable by merchants to easily provide detailed
product listings. There has been a lot of work done to explore different machine learning
and deep learning model architectures used for product matching [1, 2], different methods of
creating product embeddings [3], crawling and parsing web pages to retrieve product listings
[4], and parsing unstructured records into standardized product fields [5].

In this paper we use proprietary data from a pharmaceutical retail chain, and a health and
beauty retail chain. The goal is to integrate these two datasets through product matching.
One potential application of this work is to improve demand forecasting, especially for
products that are new to market. Time series models that predict future demand for a
product often use historical sales data as input. For certain products this data may be
unavailable for a number of reasons: perhaps a retailer didn’t keep sufficiently detailed sales
records, perhaps a retailer has only just started carrying the product, or perhaps the product
itself is new to market. In these cases, one approach to predicting demand using an existing
model is to substitute in the sales data of a similar product. Product matching can be used
to surface such products.

The main contributions of the paper are as follows:
• We formulate a hypothesis about the expected performance of the product match-

ing systems based on data profiling and we investigate if that holds through our
experiments. This allows us to make recommendations for other companies that are
interested in using these methods for their product matching needs.
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• We propose an evaluation framework for comparing product matching techniques.
The novelty of the framework is that it consistently compares all methods over a
stratified 10-fold cross validation set and it provides precision/recall curves, which
allow performance evaluation over the entire range of precision/recall values.

• We investigate and compare the use of traditional machine learning methods and
state of the art deep learning methods for product matching.

2. Background and Related Work

Record linkage is the task of finding records from two or more sources that correspond to
the same entity. The problem of record linkage has been studied in the statistics community
since the 60’s [6]. Advances in databases, machine learning, and data mining communities
have led to new and sophisticated solutions to this problem. Winkler [7], Elmagarmid et
al.[8] and Christen [9] provide a good review of the field. Many other names are used to
refer to this process, including data matching[9], entity resolution [10], and deduplication
[11]. A record linkage pipeline can be broken down into a number of discrete phases, as
shown in Figure 1.

The goal is to link records from one data collection A to another, B. A record a in A (viz.
b in B) consists of all the information available for a particular entity; in our case the entity
is a product, thus the information will be product related, e.g., brand and product name.
Through the record linkage process we aim to find all pairs (a, b), a ∈ A, b ∈ B such that
a matches b (we say that a and b refer to the same product). In this case we write a ≃ b.
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Figure 1. The phases in the record linkage pipeline.

Record linkage usually begins with two datasets that are believed to overlap to some
degree in the entities to which they refer. For example, two different retailers in similar
domains likely carry some of the same products. Ideally all product records would have
a shared unique identifier, and two records would refer to the same product if and only if
this identifier matches. In practice however, data is often characterized by errors, missing
values, differing schemas, and more confounding factors that make a simple database join
operation insufficient or impossible. To address this problem, record linkage employs a range
of techniques to measure similarity between pairs of records, which can be used to train a
classifier to distinguish pairs of matching records from pairs of non-matching records.

The first step in the record linkage process is data cleaning and standardization. This
commonly involves discarding information from one dataset that is not present in the other,
stripping extraneous characters (e.g., dollar signs) from numeric fields, and converting text
fields to a uniform casing.

To determine if two records are similar or not (they refer to the same entity or not),
one must calculate a similarity vector ϕ(a,b) over all the common attributes. Computing
the similarity vectors for all pairs of records in the Cartesian product of the two datasets is
often prohibitively computationally expensive. To address this, a blocking phase [12] is used
to eliminate as many candidate pairs (two records being considered as a potential match)
as possible. Once these similarity vectors are computed, a classification system is employed
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to determine if the pair should be classified as a match or as a non-match. The training
and evaluation of the classification model requires access to some quantity of labeled data.
The characteristics of known matches are learned by the classifier during training, and some
known matches are withheld until evaluation to measure the classifiers performance.

Product matching has been heavily influenced by trends in machine learning. Traditional
machine learning techniques have seen usage in both academia and industry [1, 5, 13]. There
have been several notable record linkage frameworks over the years, including Febrl [14]
and Magellan [15]. Most linkage problems involve records with text attributes, so record
linkage techniques have prospered from advances in natural language processing. This has
included TF-IDF based classification systems [16, 17], different word and record embedding
techniques [3], and a recent acceleration in the use of deep learning [2, 17–20]. Scraping and
parsing structured records from web product listings which can be used in linkage tasks has
also been a recent area of focus [4, 16].

3. Data

This section describes the data used in this paper. We first introduce publicly available
data that is commonly used to evaluate product matching methods and then we describe
our proprietary data. We detail how we generate candidate pairs in Section 3.2.

3.1. Datasets Description

There are a number of open source e-commerce product datasets that are commonly
used to benchmark record linkage approaches. Our paper makes use of the Abt/Buy and
Amazon/Google datasets1, and the Amazon/Walmart datasets2. These datasets are similar
to the proprietary data we wish to explore, as they are not only in the product matching
domain, but are also all explicitly comparing the catalogues of two different retailers. While
open source datasets are good for comparing different approaches, the focus in this work
is to see how the performance of different product matching techniques translates when
applied to our proprietary data and how a practitioner can translate knowledge learned on
open source datasets to their particular application. To this end, we leverage two product
datasets from major retailers. RetailerA is a pharmaceutical retail chain, and RetailerB is
a health and beauty retail chain.

The product schemas from each of these two retailers contain a limited number of over-
lapping attributes. RetailerA’s products are uniquely identified by a Global Trade Item
Number (GTIN), and RetailerB’s products are uniquely identified with a Universal Prod-
uct Code (UPC). While carrying different names, these fields can act as a shared unique
identifier (i.e., when a product carried by RetailerA has a UPC that perfectly matches the
GTIN of a product carried by RetailerB, these two products are unambiguously identical).
However, only a very small percentage of records can be matched using UPC-GTIN cor-
respondence in our datasets. Thus the need for product matching techniques to integrate
these two datasets. We use the UPC-GTIN correspondence to label 1,324 products as true
matches, as has been done before in [13]. This approach to identifying true matches is
reliable, and does not require large amounts of manual human labor.

The attributes common to both schemas include product name, brand, and 3 levels of
categorization for each product. All of these attributes are plain text, with some examples
shown in Table 1. Both retailers followed a structured 3-tier hierarchy to categorize products,
where the three category attributes define each product’s place in a hierarchy with increasing
levels of specificity. Unfortunately the hierarchies are different and can not be mapped to

1https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
2https://sites.google.com/site/anhaidgroup/useful-stuff/data
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reduce the matching space within categories. We concatenate the three category fields in
each dataset into a single textual category attribute prior to matching.

Table 1. Examples of products from Retailers A/B.

UPC/GTIN Product Name Brand Category 1 Category 2 Category 3
4001638098595 weleda skin food 75ml weleda skincare skin - facial facial moisturisers
85805558420 red door 100ml edt elizabeth arden cosmetics fragrances fragrance ladies
3600521650042 l/perf conc t/mat deep be l’oreal cosmetics mass color cosmetics mass face make up

While matching UPCs/GTINs unambiguously communicate a match, differing UPCs/
GTINs are not necessarily sufficient to say two products should be labeled as non-matching.
A product might have its UPC/GTIN updated at any time because of some minor ingredient
change, a change in the manufacturing process, because it is packaged differently (e.g.,
Christmas or Easter packaging), or because it is sold in a slightly different quantity. This
last option in particular is significant in that stores will sometimes strike agreements with
manufacturers to buy a uniquely sized version of their product. This has the effect of
preventing consumer price matching; if for example a certain grocery chain is alone in
carrying 3.6L of a certain brand of laundry detergent, then their competitor having a 50%
off sale on 4L of the same detergent can’t be used by consumers under the terms of many
price matching policies. As such, we can’t just stop at the results of the UPC/GTIN
matching and confidently label all other product pairs as non-matches.

Table 2. An overview of the datasets used in this paper, their sizes, number of labeled
matches, and overlapping schema attributes used for matching. We used code from three
prior publications, all of which also used at least two of these matching tasks (cited in
the first column).

#Records Overlapping Schema attributes
Matching Task [Used In] L R #Matches Short Str. Long Str. Numeric

Abt/Buy [2, 19, 21] 1,081 1,092 1,095 name
description price

Amazon/Google [2, 21] 1,363 1,298 1,298 manufacturer name
description price

Amazon/Walmart [2, 19, 21] 22,074 2,554 1,154 brand
modelno

title
longdescr price

RetailerA/RetailerB 188,864 187,970 1,324 brand name
category

Table 2 outlines the size, number of known matches, and matching schema attributes for
each of the datasets we use in this paper. Text attributes are classified as short ("Short Str."
in Table 2) if the attribute values contain six or fewer words on average.

3.2. Training Data Generation and Blocking

The problem of product matching is a classification task, where pairs of products are
classified by a model as a match or a non-match. In order to learn or train a classification
system, one needs pairs of products that are labelled as matches and non-matches. It is these
matching and non-matching pairs together which form the correspondence set we use to
train and evaluate our classification systems. We follow the same approach to generating
the correspondence sets as used in [21], shown in Algorithm 1. Non-matching pairs are
drawn from the Cartesian product of the two datasets being matched, excluding the pairs
already labeled as known matches. To include all such pairs in the correspondence set would
not only introduce a massive class imbalance, but would also prohibitively slow down the
feature vector creation and training of the matching models. The goal is to include enough
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Algorithm 1 Correspondence Set Generation
1: procedure get_correspondence_set(A,B) ◃ A and B are product sets
2: cs← {} ◃ initialize empty correspondence set
3: cr ← {} ◃ initialize empty category rules set
4: for a, b ∈ A× B do ◃ Cartesian product of A and B
5: if known_match(a, b) then
6: cs.add((a, b, True))
7: cr.add((a.category, b.category))

8: hnq ← 10 ∗ len(correspondence_set) ◃ hard negative quota
9: rnq ← hnq/4 ◃ random negative quota

10: appearances← {}
11: for p ∈ A ∪ B do
12: appearances[p]← 0 ◃ count record appearances in negative pairs
13: for a, b ∈ A× B do
14: if known_match(a, b) then
15: continue
16: else if appearances[a] = 10 or appearances[b] = 10 then
17: continue
18: else if cr.contains((a.category, b.category)) = False then
19: continue
20: else if relaxed_jaccard(a, b) > 0.2 then ◃ compute on primary attribute(s)
21: cs.add((a, b, False))
22: appearances[a]← appearances[a] + 1
23: appearances[b]← appearances[b] + 1
24: hnq ← hnq − 1
25: if hnq = 0 then
26: break
27: for a, b ∈ A× B do
28: if known_match(a, b) then
29: continue
30: else if appearances[a] = 10 or appearances[b] = 10 then
31: continue
32: else if cs.contains((a, b, False)) = False then
33: cs.add((a, b, False))
34: appearances[a]← appearances[a] + 1
35: appearances[b]← appearances[b] + 1
36: rnq ← rnq − 1
37: if rnq = 0 then
38: break
39: return cs

non-matching pairs for the matching model to learn what distinguishes a match from a
non-match, and including many obvious non-matches does not further this objective.

To sample from potential non-matches at random is also problematic, as the average
randomly chosen pair of products is very easy to identify as a non-match. The goal is to
include "similar" non-matches (i.e., close to the decision boundary) in the correspondence
set, which allows the matching model to learn a good class boundary.

We use two levels of blocking to discard obvious non-matches. The first blocking pass is
performed on the primary text attribute(s) using relaxed Jaccard index with inner Leven-
shtein distance, as performed in [21]. Jaccard index is a set similarity metric, computed for
two sets A and B as |A∩B||A∪B| . Text attributes are tokenized at the word level. Instead of using
exact equality to compute word equivalency, Levenshtein similarity is used.3 The second
blocking pass, performed only on the RetailerA/RetailerB problem, discards product pairs
whose category attribute values pair does not arise in the known matches.

The total number of non-matches selected through the blocking process is capped at
ten times the number of labeled matches. To avoid sampling bias, one random candidate
pair is included for every four candidate pairs selected through the blocking process. No
record from either dataset is featured in more than ten non-matching correspondence set
pairs. Table 3 shows the total size, number of matches, and number of non-matches for each
correspondence set.

3The Levenstein threshold is set to 0.7, and the Jaccard index threshold is set to 0.2 as in [21]
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4. Methodology

In this section we describe the methods employed to investigate product matching on
open source and proprietary data. With the advances in deep learning, we are interested to
explore the use of these methods on the problem of product matching and to evaluate how
they compare to more traditional machine learning methods. We generate classification
models for product matching using three established methodologies: traditional machine
leaning models [22], DeepMatcher hybrid models [2], and transformer architecture models
[19]. We chose these three approaches for their recent state of the art performance on
product matching tasks, and the availability of code from recent publications [2, 19, 21].

We aim to provide an overview of each model architecture and how the data is represented,
however the reader should refer to the original papers for comprehensive and detailed expla-
nations for how each model is implemented. The input for all the classification models will
be a pair of products (a, b), a ∈ A, b ∈ B and the output is one of two labels (i.e., "match"
or "non-match"). Although the input datasets are the same for all methods, the modelling
of the data will be method dependant as described below.

4.1. Traditional Machine Learning Models

We train four classification models in this category: a Decision Tree, a Random
Forest, a Logistic Regression classifier, and a Support Vector Machine (SVM) with a
radial basis function (RBF) kernel [22]. These are classification systems that have been
successfully employed in other record linkage problems [7–9].

…
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Figure 2. A feature vector example.

We compute feature vectors (ϕ(a,b)) for all (a, b) pairs of records in the correspondence
set. Each (a, b) pair is represented by a feature vector ϕ(a,b) = (x1, x2, ...xn) where n cor-
responds to the number of common attributes of A and B. xi shows the level of similarity
for the records a and b on attribute i. For text attributes, the similarity measures used are
Levenshtein, Jaccard, relaxed Jaccard with inner Levenshtein, exact similarity, containment
similarity, and TF-IDF cosine similarity. For numeric attributes, we compute absolute dif-
ference and exact similarity. These features are very similar to those generated by Magellan
[15]. All the similarity measures return a value between 0 and 1, with 0 being least similar
and 1 being most similar. In the event of missing attribute values, similarity values are set
to -1. Figure 2 shows an example of one of these vectors. All classification models in this
section take as input features vectors ϕ(a,b) = (x1, x2, ...xn) along with a label (i.e., "match"
or "non-match") for the entire correspondence set.

4.2. DeepMatcher Models

The DeepMatcher [2] hybrid model combines a sequence aware model (a bidirectional
RNN) with an attention mechanism. To represent candidate pairs to the classifier, individual
product attribute values are converted to sequences of character or word level embeddings.
Each embedding has a consistent dimensionality and each sequence of embeddings can be of
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a variable length. Pre-trained embeddings are used: fasttext.en.bin uses character level
embeddings released by fastText, glove.6B.300d uses word level embeddings trained on
Wiki + Gigaword with uncased GloVe, and glove.42B.300d uses word level embeddings
trained on Common Crawl with uncased GloVe.

Pairs of attribute embedding sequences are then used to compute attribute similarity
vectors. The DeepMatcher hybrid model distinguishes itself from the more rudimentary sim-
ilarity metrics used by the machine learning models through more nuanced and expressive
text field comparison. Attribute similarity vector computation is sequence aware, allowing
the model to learn complex relationships between the order and semantic significance of an
single attribute value’s embedding sequence. It is also context aware, allowing it to com-
pute a soft alignment between two embedding sequences and then perform token by token
comparisons. These attribute similarity vectors are merged into a single entity similarity
vector, which is fed into a final neural network used to make the matching prediction.

4.3. Entity Matching Transformer Models

Transformer architectures have become popular recently for NLP tasks, and have started
seeing use in the record linkage domain [19, 23]. The higher inherent capacity for parallelism
they offer over RNNs can lower training times. At a high level, the flow of this approach
is very similar to DeepMatcher. The primary difference is that the RNN used to compute
attribute similarity is replaced by a modern transformer architecture for entity matching.
Prior work indicates that transformer models excel compared to other approaches when
applied to dirty and/or unstructured data. As such, we include this model to test the
hypothesis that traditional ML techniques outperform this model in both performance and
training time on clean, structured data.

We use the code4 published by [19] to test this hypothesis. We consider two different
models: RoBERTa has distinguished itself via state of the art results on a number of
NLP tasks, whereas DistilBERT offers shorter training times and a reduced model size.
The code is structured to accept a single unlabeled text string to represent each product.
For Abt/Buy we concatenate the product name and description, for Amazon/Google we
use only the product name, for Amazon/Walmart we use only the product title, and for
RetailerA/RetailerB we use only the product name.

4.4. Data Profiling

Primpeli and Bizer [21] proposed five dimensions that can be used to profile matching-
related challenges. We use these dimensions to form a hypothesis about which matching
methods are the most appropriate for our dataset. We briefly restate each dimension here,
and we use the same methodology to profile our proprietary data to show how it compares
to the open source datasets. Schema Complexity (SC) is the number of shared schema
attributes that contribute to the matching task. Sparsity (SP) is the percentage of missing
values for all attributes in the correspondence set. Textuality (TX) is the average number
of words present in the top relevant attributes. For our dataset, this considers only of the
product name attribute. Development Set Size (DS) represents available training data. It
is computed as the combined size of the training and validation sets5. Corner Cases (CC)
attempts to capture how many difficult candidate pairs are present in the correspondence set.
It is computed by averaging all individual similarity measures present in the machine learning
feature vectors (the creation of which is described in Section 4.1), and then identifying the
a threshold that maximizes the F1 score (F1 is defined in Section 5.1). This dimension is

4https://github.com/brunnurs/entity-matching-transformer
5Since we are using 10-fold cross validation, we report the rounded average of the 10 folds for this dimension
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computed as the percentage of pairs in the correspondence set that are incorrectly classified
using this threshold. All dimensions except schema complexity are computed in the context
of the correspondence set. Profiling results are shown in Table 3.

Table 3. Correspondence set size, Schema Complexity (SC), Sparsity (SP), Textuality
(TX), Development Set Size (DS) and Corner Cases (CC) for each matching task.

Correspondence Set Profiling Dimensions
Matching Task Size #Matches #Non-Matches SC SP TX DS CC
Abt/Buy 7,154 1,095 6,059 3 0.23 8.69 6,439 0.74
Amazon/Google 8,440 1,298 7,142 3 0.03 130.22 7,596 0.68
Amazon/Walmart 15,579 1,154 14,425 5 0.08 10.52 14,021 0.27
RetailerA/RetailerB 17,874 1,324 16,550 3 0.03 6.57 16,087 0.04

The three open source datasets are characterized by high textuality and many corner cases.
In contrast, our proprietary data has lower schema complexity, lower sparsity, and shorter
attribute values. Based upon the groupings presented in [21], we expect our proprietary
data to be a good fit for traditional machine learning approaches, while the other datasets
may benefit from the deep learning approaches (Note that Primpeli et. al [21] investigated
only Random Forest and SVM in their paper).

5. Evaluation Framework and Results

Based on data profiling, we formulate the following hypothesis: traditional machine learn-
ing methods will perform well on our proprietary data. We want to investigate this hypoth-
esis in a consistent evaluation framework, to understand what method performs better on
what type of data and to observe if there are any trade-offs (e.g., time complexity) a prac-
titioner should consider. This allows us to make recommendations for other practitioners
that are interested in using these methods for their product matching needs. To achieve this
goal we propose an evaluation framework for comparing product matching techniques. The
novelty of the framework is that it consistently compares all methods over a stratified 10-fold
cross validation set, and it provides precision recall curves which allows performance evalu-
ation over the entire range of precision/recall values. In addition to testing this hypothesis,
we wish to answer the following research questions in this section:

• How do different classification systems perform on product matching tasks?
• Do traditional machine learning methods perform well on the proprietary data as

suggested by data profiling?
• Can we draw a general conclusion about which system a practitioner should choose

for their product matching task?
• Does the data modeling and training time impact the choice of the system?

5.1. Evaluation Measures

To evaluate the performance of all the systems we use precision and recall. Precision is
the fraction of correctly predicted matches out of all the predicted matches and recall is
the fraction of correctly predicted matches out of all the matches. F1 measure combines
precision and recall in a single measure by using the harmonic mean.

P =
TP

TP + FP
R =

TP

TP + FN
F1 =

2× P ×R

P +R

In addition, we compute and plot precision recall curves which show the trade-off between
precision and recall over a range of thresholds. These curves offer more insight into model
performance than precision, recall, and F1 score alone [24]. More detail on how these curves
are computed when using 10-fold cross validation is provided in Appendix A. In record
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linkage or entity matching tasks we are not concerned with true negatives (TN), as the
majority of record pairs will be non-matches.

5.2. Experimental Setup

All of our experiments are performed using 10-fold cross validation. The correspondence
set for each matching task is split into ten stratified folds. Each fold is assigned to the
validation set in one of the rounds, to the test set in one of the rounds, and to the train
set in the remaining eight rounds. For the open source datasets, we use the published
correspondence sets from [21], generated using the process described in Section 3.2. We use
this same process with the addition of category blocking to generate the correspondence
set for our proprietary data, as described in Algorithm 1. We use scikit-learn [25] for the
implementation of the traditional machine learning approaches, DeepMatcher [2], and EMT
[19] for the deep learning methods.

Table 4. Parameters tested in the grid search.

Decision Tree max. depth min. leaf size
[1, 3, 5] [5, 10, None]

Random Forest estimators max. depth min. leaf size
[10, 100, 500] [1, 3, 5] [5, 10, None]

Logistic Regression C penalty
logspace(-2, 5, 10) [l1, l2]

SVM C gamma
logspace(-2, 5, 10) [1−6, 1−4, 1−2, 1, 10]

We perform a hyperparameter grid search for the traditional machine learning models.
Tested parameters are shown in Table 4. Average F1 score on the validation set was used to
select the best parameters. Deep learning models were trained over 15 epochs, with average
F1 score on the validation set at the end of each epoch used to select the best model. The
number of epochs and all the other parameters for the deep learning models were set as
described in their respective papers [2, 19]. Average test set performance is reported for
each of the best models in Section 5.3. When a hyperparameter grid search was performed,
average training time is only reported for the best parameters.

5.3. Results

Table 5 shows the performance of all systems on the three open source datasets and one
proprietary dataset along with the training times. We use bold font to show the best per-
formance in terms of F1 score for each dataset. We underline the best performance in terms
of F1 score for each classification system. The results show that the hypothesis we formu-
lated holds and that traditional machine learning methods (i.e., Random Forest) perform
well on the proprietary data. The results show that Random Forest outperforms all other
methods on three of the four datasets. One of the deep learning methods (RoBERTa) per-
forms best on the Amazon/Google dataset. According to the data profiling Amazon/Google
had the highest textuality. The deep learning methodology was able to handle this data
characteristic better.

Can we draw a general conclusion about which system a practitioner should choose for
their product matching task? At first glance Random Forest seems a good choice. The PR
curves in Figure 3 give us a better look at the overall performance of the top performing
classification systems in each category (i.e., Random Forest for traditional machine learning,
fasttext.en.bin for DeepMatcher and, RoBERTa and DistilBERT for the Entity Matching
Transformer models). Random Forest outperforms all the other methods over the entire
range of precision recall values on Abt/Buy, Amazon/Walmart and RetailerA/RetailerB



10

datasets. The ranking of the classifiers and their performance is not as clear on Ama-
zon/Google, as the PR curves are overlapping at times. In this instance, a practitioner
might choose a classifier depending on the accepted level of precision or recall for their par-
ticular application. The complexity of the deep learning approaches require longer training
times, while all the traditional machine learning methods train in seconds.

Table 5. Average training time and F1 score for each matching task and model type.

Abt/Buy Amazon/Google Amazon/Walmart RetailerA/RetailerB
Model Time F1 Time F1 Time F1 Time F1

Decision Tree 0.036s 0.78 0.031s 0.72 0.197s 0.92 0.012s 0.98
Random Forest 1.620s 0.82 1.801s 0.76 0.445s 0.94 0.037s 0.98
Logistic Regression 0.238s 0.79 1.770s 0.68 4.737s 0.90 18.079s 0.98
SVM 0.600s 0.81 4.598s 0.73 0.714s 0.93 5.051s 0.98
fasttext.en.bin 8m 45s 0.74 2h 03m 0.81 1h 54m 0.93 24m 06s 0.85
glove.6B.300d 10m 37s 0.55 1h 59m 0.73 1h 54m 0.75 22m 37s 0.83
glove.42B.300d 11m 38s 0.56 2h 00m 0.77 1h 55m 0.82 22m 45s 0.83
RoBERTa 26m 27s 0.65 30m 57s 0.84 56m 50s 0.92 1h 05m 0.86
DistilBERT 13m 29s 0.68 15m 37s 0.82 28m 42s 0.89 33m 04s 0.86
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Figure 3. Precision recall curves for the best traditional ML, DeepMatcher, and EMT models.

5.4. Classification System Deployment

In the previous section we have evaluated and discussed the performance of the classifica-
tion systems on the testing data. However, the goal of training a classifier is to deploy it in
practice where the model will classify unseen instances. In this section, we present results
for the deployment of the classifier on RetailerA/RetailerB data.

Table 6. Examples of classified unseen pairs during the deployment.

Pair Retailer Product name Product category Product brand label

1 A katy perry killer queen edp 100 ml cosmetics fragrances fragrance ladies katy perry matchB katy perry killer queen 100ml fragrance female fine frag female fine frag katy perry

2 A batiste dry shampoo blush 200 ml health beauty care hair care shampoo batiste matchB batiste dry shampoo blush 200ml hair (brushes-combs) hair mass dry shampoo batiste

3 A batiste dry shampoo tropical 200 ml health beauty care hair care shampoo batiste non-matchB batiste dry shampoo oriental 200ml hair (brushes-combs) hair mass dry shampoo batiste

4 A avene cold cream 40 ml cosmetics derm derm face care avene skincare non-matchB avene cold cream 100ml skincare skin - facial expert skin avene

5 A la roche posay effaclar h 40 ml cosmetics derm derm face care la roche posay skincare non-matchB la roche-posay effaclar k 40ml skincare skin - facial expert skin la roche - posay

We select 10,000 unseen pairs of records and we use Random Forest to classify them as
a "match" or a "non-match". None of these pairs are part of the correspondence set used
for training/testing. 500 of these pairs were chosen for their similarity and 9,500 pairs were
drawn at random. These are respectively analogous to the hard and random negatives in
the correspondence set. Out of the 10,000 pairs 6 were predicted as a "match" and the
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rest as a "non-match" (The reader should note that this is a desirable property, as most
pairs in the Cartesian product of two sets will be non-matches). We do not have labels for
these pairs, thus we inspect them manually and we qualitatively assess the predicted labels.
The manual inspection of these pairs allows us to better understand where the classification
system performs well and where it could be improved or changed to address application
specific demands. We show in Table 6 some example pairs from the deployment stage. Pair
1 and 2 were predicted as matches and upon manual inspection they seem to be the same
product, as product name and brand match almost exactly. Pairs 3, 4, and 5 are predicted
as non-matches. We consider pairs 3 and 4 as being predicted correctly (products in Pair 3
look like two different shampoos given "tropical" vs. "oriental"; products in Pair 4 seem to
be the same cream, but the size is different). Pair 5 is an interesting example, as product
names are almost identical save for a one letter indicator. Pair 5 is a potential false negative.
Such false negatives can be addressed by talking with the retailers to better understand the
significance of their notation.

6. Conclusions

In this paper we investigated the performance of several product matching systems in a
consistent evaluation framework that we proposed. We compared the use of traditional ma-
chine learning methods and newer deep learning approaches, allowing us to make informed
recommendations to potential practitioners who want to use product matching for data inte-
gration. We conducted a detailed experimental study and our findings show that traditional
machine learning methods perform well on this task and a practitioner should investigate
these methods first. As a next step, we plan to measure the practical usage of these results
by incorporating the product matching outcome with some real world use cases (e.g., fore-
casting demand for new products) to better understand the advantage product matching
offers to this use case.

Appendix A. Precision Recall Curve Creation
Precision recall curves are constructed using the predicted match probabilities for the test

set. As the threshold value used to classify matches is lowered, recall monotonically increases.
Precision recall curves show how this affects model precision. Since we perform 10-fold cross
validation, we have 10 curves for each model type. We choose to show a single curve gener-
ated by concatenating all of the test set predictions across the 10 folds into a single vector,
shown in Figure 4. This one curve should should not be interpreted as the performance of
a specific model, but rather as the expected precision/recall of the model building process.
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Figure 4. This figure shows how the single representative precision recall curves for each model
type shown in Figure 3 relate to the ten precision recall curves from the 10-fold cross validation.
The curves for Abt/Buy Random Forest models are used as an example.
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