
The 34th Canadian Conference on Artificial Intelligence

EASTER: Simplifying Text Recognition using only 1D
Convolutions

Kartik Chaudhary†,*, Raghav Bali†,*

† Optum Global Solutions, India

*kartik@optum.com, raghavbali@optum.com

Abstract
Recurrent units and complex gated layers are key components of most text recog-

nition models. Their sequential nature and complex mechanisms require large labelled
training datasets, high computational requirements and lead to slower inference times.
In this paper, we present an Efficient And Scalable TExt Recognizer (EASTER) to per-
form optical character recognition on both machine printed and handwritten text. Our
model utilises only 1-D convolutional layers without any recurrence or complex gating
mechanisms. Our proposed architecture achieves performance similar to best perform-
ing recurrent architectures by using only 4% of training data for offline handwritten
text recognition task. We present results of our model on different machine printed text
recognition datasets as well. We also showcase improvements over the current best re-
sults on line level offline handwritten text recognition task. Our work presents a highly
scalable and deployable model for real-world settings while being highly performant.
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1. Introduction

Text is a ubiquitous entity in natural images and most real world datasets like scanned
documents, restaurant menu cards, receipts, tax forms, license plates, etc. These datasets
may contain text in both printed as well as handwritten formats. Extracting text informa-
tion from such datasets is a complex task due to variety of writing styles and more so due
to limitation of ground truth. Optical Character Recognition (OCR) systems have been in
existence for quite sometime now [1, 2]. The improvements and research in Deep Learning,
CNN and LSTM based OCR solutions [3–10] and [11] have taken the field by storm. The
results from these solutions are leaps and bounds ahead of traditional solutions like Tesser-
act[12]. The downside of these Deep Learning based solutions is their dependence on huge
amounts of labelled training data and compute.

Handwritten Text Recognition or HTR is an even more involved process with countless
variation of writing styles. While OCR for printed text has seen good improvements, HTR
still remains a challenge. Moreover, the models trained for printed text do not generalise
well (even with transfer learning) onto HTR tasks.

This paper makes the following contributions:
• A computationally efficient, simple and scalable, fully convolutional neural network

architecture for the task of OCR and HTR that uses only 1D convolutions. We also
present ways of generating synthetic training data that eases the task of building
an efficient text extraction engine from natural text images.

• We improve upon the state-of-the-art (SOTA) word error rate (WER) on IAM-
offline Handwritten text line recognition task and achieve SOTA WER for OCR
task on IIIT-5K test data as well.

• We conclude the study by highlighting the limitations and practical considerations
of EASTER.
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Figure 1. EASTER Pipeline consists of a configurable data generator, an image augmen-
tation pipeline and recurrence free EASTER architecture. Given a list of data patterns
like names, addresses, phone numbers, etc. along with a list of fonts, styles, etc. the
configurable data generator can generate training datasets of required size. Augmenta-
tion pipeline helps add perturbations to generate realistic samples

2. Related Work

Ingle et. al.[13], showcase improvements on limited datasets with architectures that have
recurrent connections. They present Gated Recurrent Convolutional Layers (GRCLs) as
specialised convolutional layers to perform recurrence along depth as compared to LSTMs
which do the same along time dimension. In this paper we address the problem of training
data volume and compute requirements together by presenting variants of our fully con-
volutional architecture devoid of recurrent connections. Our proposed architecture works
on both handwritten and machine printed texts. Being fully convolutional (using only
1-dimensional convolutions) enables development of smaller, faster and parallel trainable
models. This further reduces the barrier for deployment and scalability.

Coquenet et. al. [14] challenge the notion of recurrent networks by presenting gated
convolutional networks. They present results which are an improvement or are on par in
comparison to CNN-BiLSTM based networks. Works by Baoguang et. al.[15], Jaderberg
et. al.[16] and Lee et. al.[17] improve further by utilising specialised attention mechanisms,
complex recurrent convolutions and other enhancement techniques to solve the tasks of OCR
and HTR.

Works cited in this section optimize upon performance without much consideration on the
amount of training data required (with the exception of Ingle et. al. [13]). With EASTER, the
aim was to achieve high performance with minimal training data requirements. This added
objective was based upon practical and deployment related considerations of our application.
In section 5, we present experiments showcasing EASTER’s improved performance against
GRCL[13] using just a fraction (only 4%) of their training data volume.

Our work is inspired by research in the field of Automatic Speech Recognition (ASR).
Similar to text recognition, the task of speech recognition works upon a sequential input
where label alignment is not a trivial task. ASR related work by [18] and [19] rely on
using non-recurrent architectures. These works rely on multiple repeating block structures
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composed of different subcomponents. They also utilise residual connections and experiment
with different depths to achieve state of the art performance. To the best of our knowledge,
this is the first work that leverages only 1-D convolutions for the task of offline handwriting
recognition without any recurrence. EASTER, being a simple architecture, outperforms more
complex models in terms of training time, volume of training data and performance (word
and character error rates). Figure 1 presents the overall setup.

3. Probing Why 1-D Convolutions work for OCR/HTR tasks

RNN based architectures are the go to solution when it comes to datasets which have
temporal aspect associated with them. Collobert et. al. [20] presented convolutional net-
works capable of handling textual inputs for different Natural Language Processing(NLP)
tasks. They discussed how convolutional filters capture local context in initial layers and
use that to prepare global features in deeper layers. This idea of leveraging convolutions for
capturing temporal aspects was also explored in the automatic speech recognition domain
by Collobert et. al. [19]. This idea was further extended by Li et. al. [18] where they only
used 1-dimensional convolutions (or 1D-CNN) for the task of ASR.

The usage of the term 1-D CNN here is synonymous with the way it is popularly used
in the NLP domain. In the NLP domain, a 1-D CNN is a filter with same width as that of
input token’s embedding vector and moves across multiple tokens with each stride. Thus,
performing convolutions in only one direction. This is different from the 2-dimensional
convolutions used in computer vision use-cases where kernels move across height and width
of an input image.

The input to an OCR/HTR system is typically an image which consists of a single word
or a single line of text. Assuming a gray-scale input image (without channels) of height (H)
and width (W ) with all characters present within these dimensions. To identify a character
within this image, a crop of height H and width w (where w is very small as compared to
W ) would be required. A convolutional filter of H ∗ w dimension can be leveraged in this
setup. Such a filter moves across the width (W ) to capture local context i.e., moves only in
one direction. This is similar to the NLP setting, where we make use of simpler 1-D CNNs
to extract local context and deeper layers extract global features. This refined formulation
of OCR/HTR tasks along with success of convolutional networks in other temporal use cases
motivated us to explore 1-D CNNs.

4. Data Preparation

To prepare training data for both handwritten and machine printed text, we applied
different methodologies. The task of preparing training data for handwritten text is a bit
more difficult as compared to machine printed. First difficulty is the availability of annotated
handwritten text followed by the large variations in handwriting styles. Manually preparing
such datasets is time consuming and cost ineffective. In the following subsections we will
cover data preparation methodologies for both tasks in detail.

4.1. Handwritten Text

We utilised three different approaches to prepare the training dataset for the task of
handwritten OCR. The IAM handwriting dataset [21] contains stroke information for hand-
written text collected from various contributors in an un-constrained setting. We leverage
the images from the offline subset as input samples which have corresponding transcriptions
available. This dataset has limited samples yet provides line level data points with different
handwriting styles and text patterns.
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Figure 2. Synthetically Generated Random Samples; (a)Handwritten Text samples, (b)
Machine Printed Text Samples for random name, email address, dollar value and street
address

The next approach was to synthetically generate handwritten text data, similar to how
we prepared the machine printed dataset. For this we leveraged the method presented by
Alex Graves [22] to generate handwritten text. Similar to GRCL [13], we enabled the model
to generate different styles and variations as well. We used specific hyper-parameters to
control the mixture density layer and sampling temperature to generate usable samples.
The final approach was to manually write as well as label the samples to make sure we cover
a wide variety of text patterns and style. See figure 2(a) for samples from our handwritten
text dataset.

4.2. Machine Printed Text

Collecting machine printed dataset from with-in the organisation and from different public
sources has certain restrictions and issues. These factors range from datasets being very
clean, limited fonts or having only specific type of patterns. Instead of collecting and
curating data from such sources, we devised an ingenious method for synthetically generating
a dataset for machine printed text.

The first step was to assemble a list of common patterns of text in the real world. These
include text for street addresses, names, dollar amounts, etc.. The second step was to
prepare a repository of different font styles, strokes, formatting (underline, italics, etc.).
The final step was to use the patterns and styles as inputs to a probabilistic synthetic text
data generator. The generator was designed to have configurable settings to adjust the
variation in styles, patterns, length of text samples and overall dataset size. See figure 2(b)
for samples from our machine printed text dataset. Using this method, we virtually have
the ability to generate infinite such datasets for training and improving our models.

5. Architecture

OCR and HTR both involve taking images with text as input and generating corre-
sponding text as output. Recurrent architectures make use of LSTMs to capture sequential
dependency followed by Connectionist Temporal Loss (CTC)[7] to help train models without
specifically aligning inputs and their labels.

The basic architecture we present here is a 1-D Convolutional network inspired by the
research in the field of Automatic Speech Recognition (ASR) tasks. Works of Li et. al.[18],
Collobert et. al.[19] and Pratap et. al. [23] highlight the effectiveness of convolutional
networks in handling sequence to sequence tasks (ASR) without recurrent connections. We
extend the similar thought process for the field of OCR and HTR using EASTER (see figure
4).



5

5.1. EASTER Encoder

EASTER follows a block approach wherein each block consists of multiple repeating sub-
blocks. Each sub-block comprises of a 1-D Convolutional layer with multiple filters followed
by layers for normalisation, ReLU and dropout. We utilise padding to maintain the dimen-
sions of the input slice. Each EASTER architecture has 1 fixed preprocessing block(B1) and 3
fixed post-processing blocks(B2-B4). The pre and post processing blocks also follow similar
block structure. In our experiments, we found Batch-Normalisation to outperform other
normalisation techniques, this is similar to the findings mentioned in [18]. Figure 3 shows
a sample EASTER block. Table 1 shows the structure of a 3x3 EASTER model. The table
outlines the number of blocks, sub-blocks, number of filters and other hyper-parameters.

Table 1. EASTER 3x3: 9 blocks each consisting of 3 1-D Convolutional sub-blocks, 1
preprocessing block(B1) and 3 post processing blocks(B2-B4). Overall the model con-
tains 14 layers with 1Million trainable parameters.

Block # # of Sub-Blocks Kernel # of Filters Dropout Dilation Stride
Preprocess-I (B1) 2 3 64 0.2 1 2
E1 3 3 128 0.2 1 1
E2 3 4 128 0.3 1 1
E3 3 6 128 0.3 1 1
Postprocess-I(B2) 1 7 256 0.4 2 1
Postprocess-II (B3) 1 1 512 0.4 1 1
Postprocess-III (B4) 1 1 |Vocab| 0 1 1

5.2. CTC and Weighed CTC Decoder

The Connectionist Temporal Classification (CTC) method [7] is used to train as well as
infer results from our models. The characters (or vocabulary for our task of OCR/HTR)
in the input image vary in width and the spacing. CTC enables us to handle such a task
without the need to align input images and ground truth.

We denote the training dataset as D = {X,Y }, where X is the input image for tran-
scription and Y is the label or ground truth. Assuming we have a vocabulary set L, then
Y = Ls, where s represents label length. CTC generates outputs at every time step t. The
final output contains a sequence of repeating consecutive characters with ϵ (denoting blank
space) in between. Thus, we add another symbol ϵ representing a blank to the vocabulary
set L.

L+ = {L ∪ ϵ} (5.1)
The objective is to minimise the negative log probability of obtaining Y given an input X,
i.e.

Objective = −Σ(X,Y )ϵD log p(Y |X) (5.2)
The final output is obtained by merging consecutive repeating characters delimited by ϵ.
For instance, an output sequence like 1ϵbbϵϵa maps to 1ba. To obtain such an output, we
define a function γ which squeezes repeating characters to single occurrence and removes
blanks (ϵ). Thus, γ is a function which maps the intermediate repeating sequence output
(denoted as π) to the final output y.

p(y|X) = Σγ(π)=y log p(π|X) (5.3)

p(π|X) = ΠT
t=1y

t
πt

(5.4)
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Figure 3. Components of EASTER block. Each block contains multiple repeating sub-
blocks consisting of layers for 1-D Conv, Batch Normalisation, ReLU and Dropout. We
also experiment with residual connections denoted with dotted blue line in our deepest
20-layer variant (EASTER 5x3). The R in figure denotes the number of sub-blocks used.

where ytπt
is the probability of generating label πt at time t. Thus, the predicted label y for

input X is given as:
y = γ(argmaxπp(π|X)) (5.5)

Due to the way this function is designed, the model generates far too many ϵ’s as compared
to actual characters. This leads to the model being biased towards the blank class (ϵ). To
address this problem, [24] show multiple ways of adjusting the class weights for CTC. These
weighting strategies address the problem of class imbalance and result in fast convergence.
The class weighted CTC method is denoted as:

Class_Weighted_CTC(y|X) = −ΣtΣkαky
t
k log y

t
k (5.6)

where ytk is the generated output at time t and,

αk =

{
1− α if k = ϵ

α otherwise
(5.7)

In our experiments we saw significant improvement in performance with weighted CTC
while training on small datasets. The most basic architecture for EASTER is shown in figure
4. It is a ExR architecture with separate preprocessing and post-processing blocks where E
is the number of encoding blocks and R is the number of sub-blocks within each encoding
block

5.3. Training

For a typical training input, we first transform the input image into grayscale followed
by scaling it down to a height of 40-pixels. The network is able to handle variable width
inputs and requires no additional transformations. Individual characters have specific local
structures and we utilise overlapping 1-D convolutions to exploit the same. 1-D Convolutions
also capture short term sequential dependencies across sliding frames and further assist
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Figure 4. Basic ExR EASTER Architecture with 1 fixed preprocessing(B1) block and 3
fixed post-processing blocks(B2-B4)

in capturing the underlying temporal aspects of the sequence. EASTER block architecture
enables it to learn higher level features without the need of recurrence or any specialised
gated mechanism. We trained our models using Keras [25] with Tensorflow [26] backend.

The smallest model with half a million (0.5M) parameters achieves best results in under 1
hour of training.This enables faster turn-around time for retraining, experiments and ease of
deployment. We experimented with two more variants, one with increased number of filters
and the other with more depth. The deepest variant has 28M parameters and outperforms
RNN based models with a good margin on our internal dataset.

6. Experiments and Results

6.1. Handwriting Task

We evaluate EASTER’s performance on IAM dataset for the task of HTR. To enable
comparison with GRCL [13], we follow the same process of training our models on different
combinations of the IAM dataset. [13] firstly train GRCL with IAM-offline train dataset
which contains only 6161 lines of handwritten text and report results on the IAM-offline test
dataset. We repeat the same experiment with EASTER-5x3 (20 layer variant) with residual
connections and showcase improvements on both WER and CER by a good margin. We also
went a step ahead and trained our model on only first 3000 samples out of 6161 samples
i.e., only 50% of the actual training data. EASTER-5x3’s performance on 3k samples was
observed to be better than GRCL with 6161 training samples.

In the second experiment performed by [13], they concatenated smaller input lines in
different combination to form a larger training dataset. The resulting training dataset has
511,524 training samples. This is a significantly larger training dataset as compared to the
first experiment. We performed this experiment without the augmentation pipeline and
observe a better performance from EASTER. Table 2 refers to the two experiments.

We present results on IAM-offline test data without any language/lexicon model to fairly
compare with different network architectures. Our model shows lower CER than MDLSTM
[11], similar to dilated temporal convolutions [27] and much lower than hybrid CNN-RNN
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Table 2. Line-level recognition results on IAM Offline test Dataset as measured using
Word Error Rate (WER) and Character Error Rate (CER). GRCL refers to Gated
Recurrent Convolutional Layers as presented by Ingle et. al.[13]. All the results presented
here are based on greedy decoding without any language/lexicon model.

Model Training Dataset # of
Training Samples Augmentation WER CER

EASTER 5x3 (Ours) IAM-Off 3,000 No 33.3 14.0
GRCL [13] IAM-Off 6,161 No 35.2 14.1
EASTER 5x3 (Ours) IAM-Off 6,161 No 25.4 9.8
GRCL [13] IAM-Off + IAM-On-Long 511,524 No 22.3 8.8
EASTER 5x3 (Ours) IAM-Off + IAM-On-Long 24,481 No 20.6 7.9
GRCL [13] IAM-Off + IAM-On-Long 511,524 Yes 17.0 6.7

Table 3. Comparison of Line-level recognition results on IAM Offline test Dataset as
measured using Word Error Rate (WER) and Character Error Rate (CER). All the
results presented here are based on greedy decoding without any language/lexicon model.

Model Augmentation WER CER
Chowdhury and Vig (2018) [28] Yes 21.1 11.4
Krishnan et al. (2018) [29] Yes 32.8 9.7
Voigtlaender et al. (2016) [11] Yes 27.5 8.3
Sharma et al. (2021) [27] Yes 23.0 7.9
Ingle et el. (2019) [13] No 22.3 8.8
EASTER 5x3 (Ours) No 20.6 7.9

( [28] and [29] ). All our results (Table 3) are based on limited training data and without
any augmentations as described above.

We observed similar performance boost on internal datasets. The improvements in WER
and CER along with need for lesser training data and a lighter model (in terms of trainable
parameters and memory footprint) helped us meet production requirements as well.

6.2. Machine Printed Tasks

We performed multiple separate experiments using EASTER for the task of OCR as well.
The first experiment was based on the dataset prepared using our data generation pipeline.
We utilised this dataset to benchmark our performance for internal datasets/use cases.

The second set of experiments involved preparing our model for performance on some of
the benchmarking datasets for text extraction from natural images. Popular benchmarking
datasets we used for our experiments are as follows:

• IIIT-5k [30]: This dataset consists of 2000 training images collected from the in-
ternet. There are about 3000 test samples. The dataset also consists of 50 and 100
word lexicon which we do not use during our experiments.

• Google-SVT [31]: is another interesting dataset consisting of only 257 training
images and 647 images for test. Unlike [32], we do not use the lexicon for our
experiments.

The models with best results on the benchmark datasets utilise a range of techniques
to train. Since the volume of training data in these datasets is not enough, Synth-90k
[33] dataset is used as a training set. As the name implies, this dataset generates realistic
synthetic images. It consists of 900k test images and about 7million for training. Other
techniques like preprocessing input crops to handle skew, rotation, contrast, super-resolution
etc. are also applied by some of the works. For our benchmarking experiments we only make
use of Synth-90k dataset for training our models. We do not apply any preprocessing
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Table 4. Machine printed natural text recognition word accuracies. All results are in
unconstrained setting, i.e. models do not use lexicons/language models during decoding.
EASTER 5x3 in particular uses only greedy decoding in contrast to others in the table

Model SVT IIIT-5k
Jaderberg et.al.[16] 71.1% -
Lee et. al.[17] 80.7% 78.4%
Baoguang et. al.[15] 80.8% 78.2%
Wang et. al.[32] 81.5% 80.8%
EASTER-5x3 78.5% 86.76%

techniques other than resizing. Our experimental setup consists of a 20 layer deep variant,
i.e. EASTER-5x3), model with residual connections. This model has 28million trainable
parameters and a vocabulary of 62 characters from the English language (26 lower-case +
26 Upper-case + 10 numerals).

We did not apply any augmentations to our training dataset and performed greedy decod-
ing. No additional post processing steps, like usage of language models, etc. were applied.
There were two major reasons behind experimenting without a language model. Firstly,
training language model requires additional time and data which is not always available.
Secondly, and more importantly, the usage of language model slows down the inference
pipeline in practice. Since our aim was to develop a deployable and usable OCR/HTR
model, we experimented without a language model for EASTER.

Compared to [15–17], EASTER comfortably improves upon the WER and CER perfor-
mance against the IIIT-5k dataset. Our model is able to achieve 86.76% word accuracy
with 4.56% character error rate. For case of Google-SVT, our model achieves a word
accuracy of 78.51% with a 9.7% character error rate. We did not observe any improvements
while using the training images from Google-SVT for fine-tuning. Our model improves
upon the best in case of IIIT-5k while nearly achieves benchmark results on Google-SVT.
It is important to note that in both cases, the inference was done with a greedy decoder
without relying on the lexicon. The results and comparison are shown in detail in table 4
for reference.

7. Limitations and Discussion

Although our work can achieve compelling results in many cases, the results are not so
favourable in some scenarios. Figure 5 highlights some of the failure modes for IIIT-5k
and Google-SVT datasets. We observed that even though the transcriptions do not match
ground truth, the outputs seem to be honest mistakes. These mistakes can be largely
attributed to issues like bad image quality along with distortions which are completely
transforming certain characters. For instance, consider the distortions of characters "f" and
"G" in figure 5(b) and figure 5(e) respectively. The characters have been distorted to such
an extent that it is nearly impossible to pick the correct character without extensive post-
processing. There are also cases where specific fonts seem to confuse the model (see figure
5(f) and 5(g)). While distortions are tricky to handle, font related issues can be tackled
using more training examples.

The handwritten text recognition task is slightly more complex than the machine printed
case. Though EASTER outperforms benchmarks both in terms of performance as well as
training and compute requirements, it does face challenges when presented with overlapping
and highly cursive handwritings. Figure 6 presents a few failure modes. Most issues in
the highlighted examples can be attributed to unintelligible scribbles or at times hard to
distinguish shapes. For instance, in the second example in figure 6, the word "our" is misread
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Figure 5. Samples where EASTER fails to transcribe correctly. Each example consists
of ground truth followed by model output. Samples (b) and (e) can be attributed to
distortions while samples (f) and (g) are associated with font related issues.)

Figure 6. EASTER for handwritten text. Samples showcase scenarios where overlapping
and highly cursive handwriting lead to incorrect transcriptions.

as "ow" which is again a good enough guess given that the model is not making use of any
language model or other post-processing steps.

8. Practical Considerations

As mentioned earlier, our objective was to have a high performing model along with
consideration of training data volume. Since, this model is required for actual production
use, a secondary objective was to reduce memory footprint within acceptable performance
degradation. The results section showcased how our model is able to produce near-state-
of-the-art performance with only a fraction of training data(see table 2). We experimented
with different quantization techniques as well to reduce the memory footprint. Our 20-layer
deepest variant (with residual connections) reduces to 28MB after applying Dynamic Range
Quantization[34, 35] technique. This results in a decrease of 2% in word accuracy on the
benchmarking dataset. This degradation was within acceptable range for our practical use.

9. Conclusion and Future Work

We presented a fast, scalable and recurrence free architecture called EASTER for hand-
written and machine printed text recognition tasks. Inspired from fully convolutional ar-
chitectures for automatic speech recognition, we discussed the building blocks and training



process for EASTER. We described the dataset preparation process for both handwritten
and machine printed text. We also discussed about the impact of weighted CTC towards
faster convergence. We finally presented results on benchmarking datasets for both HTR
and OCR tasks. EASTER is able to achieve significant improvements in WER and CER.
EASTER’s performance on internal datasets achieved near state of the art performance. We
also showcased that the model performs equally well on line level data. Due to lesser number
of trainable parameters and eventually smaller memory footprint, EASTER is easier to train
and faster to use in production applications without much tooling. As part of future work
we plan to utilise attention mechanisms to improve the decoding stage.
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