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1. Introduction

Health system planners are increasingly interested in using population-level data to in-
form system planning and population-level health interventions.[1–4] Precision public health
offers to improve the health system’s ability to predict and prevent public health risks by
developing policies and targeted public health interventions aimed at specific, high-risk sub-
populations.[5, 6] Premature mortality, defined as deaths before the age of 75, is used as
an indicator to assess how a health system is functioning and to compare health status
between groups, regions, and health systems. Moreover, premature deaths are preventable
through policy, effective public health interventions, and timely medical treatment.[7, 8]
In Canada, premature mortality has remained stagnant, but gaps in premature mortality
have been growing across sex, socioeconomic status, and geography.[9–12] Such variations
in premature mortality indicate that health systems are not functioning equitably.

Past predictive modelling in health research has focused on clinical decision-making in
individual patients or clinical subgroups.[13–18] To date, little work has been done to de-
velop risk prediction models for population and public health, and few studies have focused
explicitly on all-cause premature mortality. Our study will be among the first to incorpo-
rate both robust measures of social determinants of health and environmental risk factors
(e.g., neighbourhood deprivation, air pollution concentrations, proximity to green space,
and built environment characteristics like urban density, walkability, and land use) into pre-
diction models. Including social and environmental data into population health prediction
models recognizes upstream factors and can improve predictive performance since living
conditions, neighbourhoods, and community characteristics have significant health impacts.

2. Objectives

We propose developing and testing a population-based risk prediction model to predict
the five-year incidence of all-cause premature mortality in Canadian cities using machine
learning methods. We will train and test the risk prediction model on a representative
sample of the Canadian population, and we will incorporate individual and neighbourhood-
level data on social and environmental determinants of health. Using representative data of
the population and integrating social and environmental risk factors, we expect to enhance
model predictive accuracy and fairness while equitably addressing the growing social gradi-
ents in premature mortality. By incorporating social and environmental determinants and
area-level variables, we aim to capture residual unfairness from structural and social factors
that are not captured at the individual level but still shape individual outcomes.[19]
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Working alongside our health system partners, we will test and deploy the finalized
risk prediction model to create population risk segments and identify and describe high-
risk sub-populations. Our validated risk prediction model will support population health
management and help inform policies and social and environmental interventions that can
minimize health care expenditures and ensure healthy living conditions for all.

3. Methods

We will link sociodemographic, health behaviour, and mortality data from the Canadian
Community Health Survey (CCHS) and the Vital Statistics Death Database (CVSD) to
urban, environmental, and land use data.[20–24] The data will contain upwards of 400
sociodemographic and health behaviour features and approximately 100 environmental ones.
The CCHS is a cross-sectional survey representing approximately 98% of the Canadian
population and collects information on health status, health care utilization, and health
determinants among Canadians ages 12 and older.[25] Urban and environmental data will
include health inequity, active living friendliness, green space, air pollution, weather, and
land use features.[26–32] Survey respondents will be excluded if they were under 18 or older
than 70 years of age as of the CCHS interview date. A cut-off of 70 years of age enables
a consistent five-year follow-up period. Survey respondents will be further restricted to
individuals who resided in Canadian census metropolitan areas (CMAs). After exclusions,
we expect a sample size of approximately 300,000 individuals and 72,000 premature deaths.

Machine learning methods will enable us to model premature mortality as a health out-
come with complex and multifactorial pathways, which is not possible with traditional
epidemiological approaches. We will test penalized logistic regression with engineered fea-
tures to capture non-additive and interaction effects and extreme gradient boosting models,
both supervised learning, binary classification methods, and compare their performance.
K-fold cross-validation will be used to train and validate the models with 70:20:10 training,
validation, and test splits. We will report Brier scores for overall model performance; sensi-
tivity, specificity, c-statistics, F1-scores, and ROC and precision-recall-gain curve plots for
discrimination; and calibration plots for goodness-of-fit.

To assess the impact of area-level social determinants and environmental features, we will
compare the predictive performance between the original model versus models developed
using (a.) only the CCHS, (b.) the CCHS and area-level social determinant, and (c.) the
CCHS and environmental exposures. We will also evaluate group fairness during algorithm
development by assessing whether the model’s predictive performance and calibration are
equal across age groups, ethnicities, and income quintiles. Since the risk prediction model
is being developed for a range of urban centres across Canada, we will also evaluate model
performance across CMAs by Canadian regions (i.e., Atlantic, Quebec, Ontario, Prairies,
British Columbia, Territories) and between small, mid-sized, and large CMAs.

4. Progress to Date

CCHS and CVSD data linkages were completed in December 2020. Linkages to area-level
social determinants and environmental exposures are expected to be completed by Summer
2021. Preliminary model development is scheduled to begin in Fall 2021.
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