
The 35th Canadian Conference on Artificial Intelligence
DOI: 0

Bridging Reality Gap Between Virtual and Physical Robot
through Domain Randomization and Induced Noise

Mahesh Ranaweera†,*, Qusay H. Mahmoud†

† Department of Electrical, Computer and Software Engineering
Ontario Tech University, Oshawa, ON, Canada

*mahesh.ranaweerakaluarachchige@ontariotechu.net

Abstract
This paper investigates techniques that can be utilized to bridge the reality gap be-

tween virtual and physical robots, by implementing a virtual environment and a physical
robotic platform to evaluate the robustness of transfer learning from virtual to real-world
robots. The proposed approach utilizes two reinforcement (RL) learning methods: deep
Q-learning and Actor-Critic methodology to create a model that can learn from a vir-
tual environment and performs in a physical environment. Techniques such as domain
randomization and induced noise during training were utilized to bring variability and
ultimately improve the learning policies. The experimental results demonstrate the ef-
fectiveness of the Actor-Critic reinforcement learning technique to bridge the reality gap.

Keywords: Deep Q-learning, actor-critic, reinforcement learning, transfer-learning,
virtual-to-real, robotics

This article is c© 2022 by author(s) as listed above. The article is licensed under a Creative Commons
Attribution (CC BY 4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode),
except where otherwise indicated with respect to particular material included in the article. The article
should be attributed to the author(s) identified above.

1. Introduction

Developing advanced robotic systems that can mimic, have dexterity, and adapt to real-
world environments that are dynamic in nature is challenging. Moreover, it is a daunting
task for pre-programming robots to traverse, visualize, and have dexterity in an unfamiliar
environment. The uncertainty of adapting to different environments and making decisions
based on unseen data can be time consuming and expensive. Therefore, most modern robotic
systems and autonomous mobile robots are domain specific. Due to advancement in machine
learning techniques, more and more robotic platforms are developed to perform advanced
tasks. However, some of the major disadvantages of machine learning is the requirement
of a large amount of quality training data. Acquiring such quality data is expensive, time
consuming and often needs to be re-trained when the platform is deployed in an unseen
environment. One of the emerging areas of machine learning is reinforcement learning (RL),
in which the agent can interact with the environment to learn policies through imitation
learning [1]. For generating vast amounts of training data, a simulated environment can
be used. However, a simulation is unable to capture the environment, dynamics and the
robot [2]. The inconsistency between physical parameters and dynamics such as gravity,
friction, collisions, density and simulating soft surfaces are complex to model in a virtual
environment. Also, noise introduced by sensors, gear backslash, latency and environment
factors such as texture quality, reflection and refraction could adversely affect performance
of the trained model [3]. This phenomenon is known as the Reality Gap.

The goal is to investigate, prototype and evaluate transfer learning from a virtual en-
vironment to a physical robot. A three degrees of freedom (DoF) Stewart platform was
built to evaluate the accuracy of transfer by balancing a marble. A virtual environment was
also developed to train the reinforcement learning algorithm. Additionally, this research
contributes to closing the existing reality gap through domain randomization and induc-
ing variability to enhance the learning on simulated environments. Deep Q-learning and
Actor-Critic RL learning techniques were utilized in this research. To this end, the rest of



2

the paper is organized as follows. Section 2 summarizes the related work. The proposed
methods are presented in Section 3, and the experimental setup in Section 4. Evaluation
results are presented and discussed in Section 5. Finally, concluding remarks and ideas for
future work are summarized in Section 6.

2. Related Work

There have been multiple research projects conducted on using virtual data or virtual
environment to train a deep learning model. Sim2Real has become a research concept
that describes the transferring of knowledge gained from a virtual simulation to a physical
robotic system. One of the major problems in robot training is the difficulty of transferring
the trained model to the real-world robot. This is often due to lack of quality training data,
sample inefficiency and the cost of acquiring real-world data [4]. The main motivation of
Sim2Real learning is to solve the domain gap due to insufficient training data by utilizing a
virtual environment that allows to obtain necessary training data. Even if a model trained
on a virtual environment was transferred to a physical system there is no guarantee that the
model is able to adapt to physical dynamics. According to Lipton et al. this issue is due to
Quasi static kinematics [5]. There are few methods proposed by researchers to improve the
quality of transfer to close the reality gap. Some of the proposed methods are photo-realism
rendering (realistic virtual environment), domain randomization and domain adaptation [6].

Domain randomization is a method that creates variety in the virtual environment by
changing or randomizing environment or properties. This method that has been used by
multiple researchers [7], [8] shows that it enforces the model to learn from a rich distribution
of training data and variations. One of the major research projects conducted by OpenAI
was teaching a multi dexterous robot arm to solve a Rubik’s cube [2]. They proposed a novel
improvement to the domain randomization method called automated domain randomization
(ADR). With ADR they were able to generate randomized environments with increasing
difficulty. Their research suggests that this method vastly improves the control policies and
vision estimates of a model. Results affirm that models trained with ADR show signs of
meta-learning when compared with virtual and physical performance.

Domain adaptation is a subcategory of transfer learning used to improve the performance
of a target domain. Wang et al. describe two methods of domain adaptation. They are one-
step and multi-step domain adaptation [9]. The two methods can be used to update the
data distribution in the simulation to match the real-world physical environment. Domain
adaptation is currently being used in [10–12] for improving the quality of transfer in robot
grasping. As described by Tobin et al. [7] domain adaptation methods include re-training
the model on the target domain, performing intermediate learning steps to learn invariant
features between the domains, learning mapping from target domain to source domain and
learning invariant feature space to transfer skills from source agent to target agent [13].

Another method to bridge the reality gap is to closely match the virtual environment
to the physical environment. This method involves creating a virtual environment that is
closely related to the physical environment through high-fidelity rendering and simulations.
Currently game engines and physics engines are utilized for performing simulations and
learning. GPU based simulators and game engines such as NVIDIA Flex [14], Alphabet
Soup, MuJoCo [15], RAWSim-O [16], Unreal Engine [17] and Unity are widely used. How-
ever, this method requires high computation power for rendering and physics calculations.

By accounting current methods and limitations, this research proposes an approach to
augment the learning by utilizing a fidelity environment, domain randomization and inducing
random noise to the simulated environment to increase the fidelity of learning. Antonova
et al. [18] on their research on pivoting a tool held by a robot gripper shows that inducing
randomized noise to physics, friction and delaying actions on the simulator has improved



3

the physical robot. It also shows that trained policies are robust and prone to mechanical
errors and imperfections in the real-world robot gripper.

Since this area is still under research, some limitations and shortcomings were identified
in the reviewed research. The reviewed research proposed a domain-randomization method
to generalize the model. However, domain-randomization methods cannot randomize effects
that are not modelled in the virtual environment and cannot further generalize the model.
In order to obtain observations, OpenAI utilizes multiple sets of cameras, an advanced
Giiker cube with built in sensors and a cage to house the physical environment with ideal
lighting conditions. Their implementation suffers from curse-of-dimensionality due to the
sheer amount of sensor data; and therefore, requires a large volume of data to maintain
the quality of learning. Their platform requires precise calibration of camera, field-of-view,
sensors, lighting conditions and virtual environment. The present research, in contrast,
randomizes the camera location, field of view, motion and lighting to induce variability and
generalizes the reinforcement learning rather than relying on accurate camera position or
calibrations. Additionally, the current research evaluates performance of learning through
raw image data using Q-learning methodology and using Actor-Critic for making predictions
based on marble position, velocity vector and the location relative to the center.

3. Methods

To bridge the gap between virtual and reality, two environments have been created: a
virtual environment for simulation and training and a physical environment for evaluating
the quality of transfer. A simple goal for agents was assigned to balance a marble on a
platform. The goal was to find learning techniques, procedures and restrictions that arise
when performing virtual to real-world transfer learning. Figure 1 shows the overview of
the proposed transfer learning process. The simulated environment provides learning for
the reinforcement learning models while simulating the physical system. Simulated envi-
ronment contains the learning agent, dynamic simulation module, an environment model,
and rendering engine. The learning agent is the deep learning algorithm. During the ini-
tial learning period, the agent observes the environment by performing random controlled
actions. After the set learning period, agents perform replay actions based on the learning.
The process continues until the agent is able to achieve a persistent score/reward or if the
agent reaches a predefined close condition. For this research, two reinforcement algorithms
were implemented. They are Actor-critic and Deep Q-learning. These algorithms will be
further discussed in section 3.2.2. In each new iteration the virtual environments parameters
are randomized to improve the overall learning. The dynamic simulation module performs
the control commands received from the agents. This module actuates the virtual servos
by applying corresponding forces and angular motion in pre-define vectors. The environ-
ment model handles the environment conditions such as randomizing lighting conditions,
changing background textures and adding random noise. This also includes the virtual en-
vironment, a 3DoF Steward platform. The rendering modules handle the rendering of the
virtual environment. On the other hand, in the physical environment there are the same
counterparts implemented for performing real-world actions.

Once the agent is trained in the simulation it is then transferred over to the physical
environment. The agent can now make predictions about the observations received through
the sensors. It returns a probability value for each action trained on the virtual environ-
ment. Probability is translated to real-world actuation through the Actuation module. The
environment is a 3DoF Steward platform. Camera module was used to track a target marble
positioned on the Stewart platform. Observed data is then fed into the agent for making
continuous predictions to keep the marble in place.



4

Figure 1. Overview of adapted transfer learning architecture

Both the virtual and physical environments were configured to the same physical at-
tributes; such as number of degrees-of-freedom, angular limitations, joint limits, action
delays, and surface hardness. Domain randomization techniques were employed in the vir-
tual environment to randomize the scene to improve the learning. Domain randomization
allows to increase the variability of learning [7].

3.1. Environment Setup

3.1.1. Virtual Environment

Figure 2. Virtual environment setup on Godot game engine

A virtual environment was created for simulating the real-world for training the model.
Godot, an open-source game engine, was utilized for creating the virtual environment. The
Virtual Stewart platform was designed using Autodesk Inventor to keep both physical and
virtual environments uniform. Figure 2 shows the Godot game engine with the virtual
environment setup for training. Motion of the platform, degrees-of-freedom are restricted
based on the real-life physical environment. A WebSocket server was configured to the
virtual environment to relay the actions during training, receive environment data, define
environment variables, perform calibration and to reset the scene. Additional scripts were
set up to receive command line inputs to initiate the simulation, setup WebSocket ports,
and physics engine. Initiating simulation involves setting parameters to randomize the
environment variables such as lighting condition, textures, adding camera noise, frame-
rate, setting marble position, marble size, marble weight and surface friction. Additionally,
instead of using Godot’s built-in physics engine, it was configured to use Bullet, which is
an open- source physics engine that is used for simulating advanced robotic simulations



5

[19]. Using this physics engine allowed us to configure GPU based optimization during
the learning process and avoid CPU and memory bottleneck when multiple instances were
invoked. The Godot scene which comprises the virtual environment was compiled to a
standalone runnable executable.

3.1.2. Physical Environment

Physical environment was custom 3D printed using the Autodesk Inventor design. This
allowed us to keep both virtual and physical environments uniform. As shown in figure 3 the
Steward platform was housed in a robot cage for stability and for housing attachments for
monitoring the system. Single RGB camera module was placed in the center for capturing
observations in the real-world. A Jetson nano compute module was used as the main com-
puter for interfacing with inputs, making observations, performing predictions and handling
servo controlling.

Figure 3. Physical Stewart platform housed in the robot cage

Each axis is controlled by a DS3218 PRO full metal gear digital servo. Four ball joints
are used to create the linkage between the base and the axis arm. This allows the platform
to gimbal based on each axis movement. The motion arc of the servo is restricted to 90
degrees from the idle position. On start-up the position of the axis is set to 45 degrees
keeping the base leveled.

A generic 1080p camera was used to capture the frames which were then downscaled
to 80x80 pixels based on the requirements. Camera was mounted on an adjustable jig to
manually change the frame of view if necessary. The OpenCV library was used to detect the
marble, track its position relative to the base, determine velocity vectors and pre-process
frames for making predictions. A checkerboard calibration process was conducted on the
physical camera to correct any imperfections or distortions. Field of view of the camera and
the height from the camera to the base was kept at a constant. A RGB lighting rig was
added to light the camera view for easy tracking of the marble. Varying environment light
causes OpenCV object tracking to fail and often miscalculates the center of the marble.

3.1.3. Data Collection

During the learning process, the algorithm was set to perform following tasks to initiate
the virtual environment; set environment parameters, create a socket connection for sending
actions and receiving information from the virtual instance. Since reinforcement learning al-
gorithms are used for learning, RL assumes that an agent is available in the environment [20].
The data collection module is set up to perform an action against the virtual environment
in each step and receive observation through the WebSocket connection. The observation



6

contains information on roll, pitch, marble position, marble velocity, marbles distance to
the center of the base plate and raw virtual camera image. The captured RGB image is
limited to 640 by 360 pixels width and height respectively. Each new virtual instance will
be assigned with a unique WebSocket port number which will be used to communicate and
receive observations. Figure 4 shows the adapted flow diagram of the learning environment
adapted from Open-AI gym.

Figure 4. Flow diagram of the overall reinforcement learning algorithm

Based on the trained model, information from the observation is used to calculate the
reward, update the learning weight, perform resetting and to terminate the learning. As
shown in figure 5, three regions are marked to identify the location of the marble. If the
marble is within the red zone, then a reward of one point will be offered. If the marble
is within the red and blue zone the reward will be 0.5. If the marble reaches outside the
blue zone, then the environment will be reset for next episode. In this way the learning
algorithm will be able to reward if the marble is being navigated to the center of the
base. Two Reinforcement learning algorithms were implemented: Actor Critic and Deep
Q-learning. For the Actor critic algorithm, the position, velocity of the marble and the
zone in which the marble is located was used as the observations. On the other hand, the
Q-learning algorithm uses the image frame data. The captured frames are cropped and
downscaled to 80x80 pixels. The information is then input into the convolutional layers.

Figure 5. Virtual regions marked to calculate the reward function

3.2. Model Architecture

In this research two RL algorithms were implemented to evaluate progress of learning
when Domain randomization and inducing random noise. Both algorithms were imple-
mented with Python, utilizing Keras and TensorFlow libraries. Keras and TensorFlow are



7

open- source libraries that provide APIs to create artificial neural networks. Keras was con-
figured to utilize multi-GPU for faster learning and handling larger batch sizes during the
training. Since sparse data and adaptive learning rate is used, Adam optimizer was utilized
for the model. Huber Loss function was used as the loss function for the models.

3.2.1. Deep Q-Learning

Deep Q-learning uses an off-policy method to separate learning and acting policies. In this
research, Q-learning was implemented with Convolution Neural Network (CNN). Q-learning
employs the CNN to approximate the value function for state. This implementation of Q-
learning was first developed by Google’s Deep Mind for playing the 2600 Atari games. There
are two steps in Q-learning where it approximates the value using the Q technique and then
uses the experience replay method to stabilize the neural network. This is because the
neural network is highly unstable when approximating the values [21]. Figure 6 shows the
architectural diagram of the implemented Q-learning model.

Q-Value Function:

Q(s, a) ← Q(s, a) + α[R+ γmaxQ(s′, a′)−Q(s, a)] (3.1)

Figure 6. The model architecture of Q-learning methodology

For each step the learning algorithm takes, it receives observations from the virtual envi-
ronment. These images are preprocessed, and random camera noise is added to increase the
entropy. Images are stacked and downscaled to 80x80 pixels before input into the model.
The network is able to learn an approximation of the Q-table which contains mapping of
actions and corresponding states. In this case the network performs two actions: pitch
and roll. When pitching the platform, it angled about the x-axis, when rolling, the plat-
form angled in y-axis. Action pitch_left (-1), pitch_right (+1), roll_backward (-1) and
roll_forward (+1) were executed against the virtual environment to make observations and
replays. For each episode reward was calculated based on the location of the marble relative
to the center of the platform. The highest reward of +1 will be offered if the marble is in
the center region (refer Figure 5) and +0.5 will be offered if within the blue region else the
environment will be reset for the next episode. Initially, the algorithm is set to perform ran-
dom actions against the virtual environment and observe the states. Thereafter the agent



8

selected the best action based on the known Q-value. The algorithm terminates when it
reaches the optimum exit condition.

In the physical system algorithm utilizes the camera module and OpenCV library to
capture and pre-process the images required to make a prediction. Based on the action
proposed by algorithm, the physical system performs a pitch or roll on the platform. These
roll and pitch commands are translated into servo motion through inverse kinematics. Three
servos are driven based on the proposed pitch and roll values.

3.2.2. Actor-Critic Architecture

Actor critic method uses two separate models namely actor and critic. The actor (policy)
proposes a set of actions for a given state, and the critic determines and evaluates the actions
proposed by the actor [22]. Actors and critics learn to perform until it maximizes the reward
for the virtual environment.

The implementation of Actor-critic in this research follows a similar structure (Figure 4)
as the Q-learning. The algorithm continued until the reward reaches a specific milestone or
until the algorithm reaches 5000 episodes. For each step the algorithm receives the current
position of the marble, the velocity vector and the location of the marble relative to the
center. Similar to the Q-learning algorithm, it performs two actions, pitch and roll. Action
pitch_left(- 1), pitch_right(1), roll_backward(-1) and roll_forward(1) are performed in the
virtual environment. Velocity vector, marble position and information on which zone it is
located are passed as input to the actor-critic model. Velocity vector is obtained through
the game engine, and it allows to determine the direction and velocity at which the marble
travels. Based on the location of the marble, the actor-critic learns to predict the future
motion required to center the marble. Figure 7 shows the model architecture of Actor-Critic
where the left branch shows the actor while right branch shows the critic.

Figure 7. The model architecture of Actor-Critic methodology. Left branch denotes
the Actor while right branch denotes the Critic

Similar to Q-learning, on the physical system, algorithm utilities the camera to obtain
the marble position relative to the center of platform, current marble location and velocity
vector approximation. Pitch and roll actions proposed by actor-critic are translated to
individual servo axis movement through inverse kinematic calculations.

3.3. Domain Randomization and Inducing Noise

Domain randomization and noise was added to the virtual environment during the train-
ing process. The main hypothesis behind adding domain randomization and noise during the
training is to maximize the diversity of the virtual environment. Researchers have suggested
that the domain randomization method drastically improves the quality of emergent meta
learning. Figure 8 shows the domain randomization process applied across the virtual scene
to change the textures of the scene. In each new episode, the environment is randomized.
The method directly affects Q-learning as it utilizes the raw pixel data for training.



9

Figure 8. Domain randomization to randomize the environment textures and lighting

Additionally, randomized noise is introduced into the environment to induce variability in
the physics simulation. Mass, friction, and simulation framerate were modified to a certain
extent to introduce the variability. Camera field-of-view and position of the camera relative
to the platform was also changed during the training process. The number of lights in
the scene, orientation, focus, specular characteristics and brightness were randomized. In
addition, the position of the marble relative to the platform, its radius and weight were also
randomized. This small randomization allows the model to be generalized when transferred
into the physical environment and has the ability to adapt to small environment, physical
or mechanical changes.

4. Experimental Setup

Both Actor-Critic and Q-learning algorithms were trained on the same virtual environ-
ment with exact same parameters and environment variables. For Q-learning the learning
rate was set to 0.00025 and Actor-Critic was set to 0.01 respectively. Both algorithms were
set to be trained for 600 episodes. In addition, both algorithms were set to terminate when
they reached a reward level of 10,000. Each model was set to save if the running reward was
higher than previously recorded reward. Tensorboard was utilized to visualize the training
phase, observation phase and replaying phase. The reinforcement learning process was con-
ducted on a local system that has a Nvidia RTX 2080 GPU, RAM of 64 GB and a AMD
Ryzen 5800X CPU with 3.8 MHz.

Once the initial training was conducted the trained models were transferred over to the
physical robot. The models were hosted on the Jetson Nano, which interfaced with the
3-Axis Steward Platform. The camera feedback was utilized as the only source of input
for the algorithm. Additional pre-processing was conducted to downscale the images to
80x80 pixels, compute the velocity vector, track the position of the marble relative to the
platform. Based on input image, a roll or pitch value will be output from the model.
Using Inverse kinematic each servo location for each axis will be obtained. The goal of the
physical environment was to evaluate the performance of the RL model on the real-world.
The monocular camera position was kept static while setting the field of view match virtual
environment (similar to view on Figure 5). The lighting was kept at best at a constant.
Initial position of the platform was set to 45 degrees keeping the platform leveled. A delay
of 30s was added until the marble was placed on the platform to begin the prediction.



10

5. Results and Discussion

Multiple training sessions were conducted while optimizing the hyper-parameters of each
Actor-Critic and Q-learning methodologies. On Q-learning the number frames to perform
random actions against the virtual environment before observing the output was increased
from 5,000 to 100,000 to optimize the learning policies. Max-memory length was decreased
from 300,000 frames to 100,000 to reduce the max-memory length during the training.
Different batch sizes were tested (from 32, 64, 128 and 256). The optimum batch size for the
resources available was 64. Increased batch size caused memory overflow and over utilization
of GPU causing the virtual environments frame-rate to drop. This directly affected the
performance of the model.

Figure 9 shows the performance of Actor-Critic and Q-learning algorithm for 600 episodes.
Actor-Critic algorithm took 32 hours to reach 600 episodes and by far yield the best per-
formance. It was able to obtain a maximum reward of 9665 at 589th episode. Q-learning
on the other hand took 29 hours to complete 600 episodes. This algorithm was only able to
reach a max reward of 583 and overall maintained an average of 466.

Figure 9. Accumulated reward per episode on virtual environment (Blue graph:
Actor-Critic, Orange graph: Q-learning)

Figure 10 shows the number frames the model was able to keep the marble centered in
the platform. Q-learning was consistent in keeping with the marble towards the blue zone
from the very beginning. However, the model was not able to keep the marble centered to
receive the highest reward. Actor-Critic was not able to perform well until the episode 450
at which it was able to accurately keep the marble centered.

Figure 10. Episode length of time (number of frames the marble was balanced in the
center) Top graph: Actor-Critic; Bottom graph: Q-Learning

To evaluate the performance of the physical environment and evaluate each algorithm’s
performance, each model was tested for 20 trials. Each trial was considered as one episode



11

and was timed to observe how much time the marble was centered on the platform. On
an average, Actor-Critic algorithm was able to center the marble for 74s over a 2-minute
episode. On the other-hand Q-learning model on average was able to center marble for
34s. Since Q- learning depended on raw scene as an input to the model, the inconsistency
of real-world lighting, dynamics and inadequate initial reinforcement learning caused the
model to perform poorly.

6. Conclusion and Future Work

This research implemented two reinforcement learning methodologies to investigate and
to evaluate factors that affect the quality of virtual to real-world transfer in order to find
workflows to reduce the reality-gap. In this implementation, Q-learning utilizes raw image
data for making a prediction while actor-critic based its prediction on pre-processed numer-
ical information. Since actor-critic relied on the position of the marble and velocity vector,
it was able to create policies that can predict the next movement of the marble and make
a prediction. On the other-hand, Q-learning struggled with environment changes such as
inconsistent real-world lighting, system dynamics and the closeness of virtual environment
to real-world.

Future work includes improving the accuracy of the Q-learning methodology by improv-
ing the virtual environment, evaluating the parameters that optimize the learning, and
factors that affect the negative learning. Additionally, to improve the quality of learning the
researchers can employ multi-agent learning environments to increase the variability and
speedup the learning. This allows to tune hyper-parameters, environment variables and to
observe learning accuracy. Researcher will employ cloud solutions to overcome the memory
overflow and GPU utilization problems for future learning. In addition, perform exper-
iments with additional textures, lighting, rendering techniques and utilization of domain
adaptation technique will be used to improve the reinforcement learning policies.

References

[1] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. “Deep Reinforce-
ment Learning that Matters”. In: arXiv:1709.06560 [cs, stat] (Jan. 2019). arXiv: 1709.06560.
url: http://arxiv.org/abs/1709.06560.

[2] OpenAI et al. “Solving Rubik’s Cube with a Robot Hand”. In: arXiv:1910.07113 [cs, stat]
(Oct. 2019). arXiv: 1910.07113. url: http://arxiv.org/abs/1910.07113.

[3] J. Collins, R. Brown, J. Leitner, and D. Howard. “Traversing the Reality Gap via Simulator
Tuning”. In: arXiv:2003.01369 [cs] (Mar. 2020). arXiv: 2003.01369. url: http://arxiv.org/
abs/2003.01369.

[4] J. Tebbe, L. Krauch, Y. Gao, and A. Zell. “Sample-efficient Reinforcement Learning in Robotic
Table Tennis”. In: arXiv:2011.03275 [cs] (Mar. 2021). arXiv: 2011.03275. url: http://arxiv.
org/abs/2011.03275.

[5] H. Lipson, J. Bongard, V. Zykov, and E. Malone. “Evolutionary Robotics for Legged Ma-
chines: From Simulation to Physical Reality.” In: Jan. 2006, pp. 11–18.

[6] N. Hafez, V. Dietrich, and S. Roehrl. “Analysis of Different Methods to Close the Reality Gap
for Instance Segmentation in a Flexible Assembly Cell”. In: June 2020, pp. 505–515. isbn:
978-3-030-48988-5. doi: 10.1007/978-3-030-48989-2_54.

[7] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. “Domain Random-
ization for Transferring Deep Neural Networks from Simulation to the Real World”. In:
arXiv:1703.06907 [cs] (Mar. 2017). arXiv: 1703.06907. url: http://arxiv.org/abs/1703.
06907.

[8] S. Park, J. Kim, and H. J. Kim. “Zero-Shot Transfer Learning of a Throwing Task via Domain
Randomization”. In: 2020 20th International Conference on Control, Automation and Systems
(ICCAS). ISSN: 2642-3901. Oct. 2020, pp. 1026–1030. doi: 10.23919/ICCAS50221.2020.
9268312.

http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/2003.01369
http://arxiv.org/abs/2011.03275
https://doi.org/10.1007/978-3-030-48989-2_54
http://arxiv.org/abs/1703.06907
https://doi.org/10.23919/ICCAS50221.2020.9268312


12

[9] M. Wang and W. Deng. “Deep Visual Domain Adaptation: A Survey”. In: Neurocomputing
312 (Oct. 2018). arXiv: 1802.03601, pp. 135–153. issn: 09252312. doi: 10.1016/j.neucom.
2018.05.083. url: http://arxiv.org/abs/1802.03601.

[10] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J.
Ibarz, P. Pastor, K. Konolige, S. Levine, and V. Vanhoucke. “Using Simulation and Domain
Adaptation to Improve Efficiency of Deep Robotic Grasping”. In: arXiv:1709.07857 [cs] (Sept.
2017). arXiv: 1709.07857. url: http://arxiv.org/abs/1709.07857.

[11] M. Yan, I. Frosio, S. Tyree, and J. Kautz. “Sim-to-Real Transfer of Accurate Grasping with
Eye-In-Hand Observations and Continuous Control”. In: arXiv:1712.03303 [cs] (Dec. 2017).
arXiv: 1712.03303. url: http://arxiv.org/abs/1712.03303.

[12] A. Hundt, B. Killeen, N. Greene, H. Wu, H. Kwon, C. Paxton, and G. D. Hager. “"Good
Robot!": Efficient Reinforcement Learning for Multi-Step Visual Tasks with Sim to Real
Transfer”. In: IEEE Robotics and Automation Letters 5.4 (Oct. 2020). arXiv: 1909.11730,
pp. 6724–6731. issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.2020.3015448. url: http:
//arxiv.org/abs/1909.11730.

[13] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine. “Learning Invariant Feature Spaces to
Transfer Skills with Reinforcement Learning”. In: arXiv:1703.02949 [cs] (Mar. 2017). arXiv:
1703.02949. url: http://arxiv.org/abs/1703.02949.

[14] A. Kar, A. Prakash, M.-Y. Liu, E. Cameracci, J. Yuan, M. Rusiniak, D. Acuna, A. Torralba,
and S. Fidler. “Meta-Sim: Learning to Generate Synthetic Datasets”. In: arXiv:1904.11621
[cs] (Apr. 2019). arXiv: 1904.11621. url: http://arxiv.org/abs/1904.11621.

[15] S. Gu, E. Holly, T. Lillicrap, and S. Levine. “Deep reinforcement learning for robotic manip-
ulation with asynchronous off-policy updates”. In: May 2017, pp. 3389–3396. doi: 10.1109/
ICRA.2017.7989385.

[16] L. Xie, H. Li, and N. Thieme. From Simulation to Real-World Robotic Mobile Fulfillment
Systems. Oct. 2018.

[17] M. Bakhmadov and M. Fridheim. “Combining Reinforcement Learning and Unreal Engine’s
AI-tools to Create Intelligent Bots”. en. In: (2020). Accepted: 2020-08-16T16:01:55Z Publisher:
NTNU. url: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2672159 (visited on
03/29/2022).

[18] R. Antonova, S. Cruciani, C. Smith, and D. Kragic. “Reinforcement Learning for Pivoting
Task”. In: arXiv:1703.00472 [cs] (Mar. 2017). arXiv: 1703.00472. url: http://arxiv.org/
abs/1703.00472.

[19] T. Erez, Y. Tassa, and E. Todorov. “Simulation tools for model-based robotics: Comparison
of Bullet, Havok, MuJoCo, ODE and PhysX”. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). ISSN: 1050-4729. May 2015, pp. 4397–4404. doi: 10.1109/
ICRA.2015.7139807.

[20] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
“OpenAI Gym”. In: arXiv:1606.01540 [cs] (June 2016). arXiv: 1606.01540. url: http://
arxiv.org/abs/1606.01540.

[21] B. Jang, M. Kim, G. Harerimana, and J. W. Kim. “Q-Learning Algorithms: A Comprehensive
Classification and Applications”. In: IEEE Access 7 (2019). Conference Name: IEEE Access,
pp. 133653–133667. issn: 2169-3536. doi: 10.1109/ACCESS.2019.2941229.

[22] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska. “A Survey of Actor-Critic Re-
inforcement Learning: Standard and Natural Policy Gradients”. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42.6 (Nov. 2012). Con-
ference Name: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), pp. 1291–1307. issn: 1558-2442. doi: 10.1109/TSMCC.2012.2218595.

https://doi.org/10.1016/j.neucom.2018.05.083
http://arxiv.org/abs/1802.03601
http://arxiv.org/abs/1709.07857
http://arxiv.org/abs/1712.03303
https://doi.org/10.1109/LRA.2020.3015448
http://arxiv.org/abs/1909.11730
http://arxiv.org/abs/1703.02949
http://arxiv.org/abs/1904.11621
https://doi.org/10.1109/ICRA.2017.7989385
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2672159
http://arxiv.org/abs/1703.00472
https://doi.org/10.1109/ICRA.2015.7139807
http://arxiv.org/abs/1606.01540
https://doi.org/10.1109/ACCESS.2019.2941229
https://doi.org/10.1109/TSMCC.2012.2218595

