
The 35th Canadian Conference on Artificial Intelligence

DOI: 0

Complexity Analysis of Green Pickup-and-Delivery Problems
on Ring Structures

Xing Tan†,*, Jimmy Xiangji Huang†, Kai Huang⋄
† Department of Computer Science, Lakehead University, Canada

‡ Information Retrieval and Knowledge Management Research Lab, York University, Canada
⋄ DeGroote School of Business, McMaster University, Canada

*xing.tan@lakeheadu.ca

Abstract
In a Green Pickup-and Delivery problem (GPD), green vehicles (e.g., electric or hybrid cars) are

used for routing in the problem domain, and these vehicles are particularly constrained with limited
fuel capacity, thus shorter traveling range. A refueling infrastructure providing wide-area coverage,
meanwhile, has not been fully developed to this end. A recent study reveals that vehicle routing in
essence with green constraints only, is at least weakly NP-hard, motivating us to pursue a deeper
understanding of the underlying computational challenge associated with this “green” intractability. In
this paper we perform complexity analysis on several GPD subproblems (namely, RINGs), that is, the
problems whose task-graphs are under a ring structure. Using measures of width/length of rings, we
delineate clearly two complexity boundaries: one between weakly and strongly NP-complete, and the
other between tractable and intractable in general. Our results bring new insights for the research and
development (current and active, but with limited success only to this point) of heuristics or algorithms
for solving GPDs.
Keywords: Green Vehicle, Pickup and Delivery Problems, NP-completeness, Intractable Problems,
Greedy Algorithm

This article is © 2022 by author(s) as listed above. The article is licensed under a Creative Commons Attribution (CC BY
4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode), except where otherwise indicated with
respect to particular material included in the article. The article should be attributed to the author(s) identified above.

1. Introduction

Vehicle routing for picking up entities (such as goods, packages or passengers) from origin lo-
cations and delivering them to their destination locations (PD), is a classic problem well-studied in
Operations Research [1–3], and in several areas of Artificial Intelligence, including planning and
scheduling [4], robotics [5], multi-agent systems and path finding [6–8], and intelligent transporta-
tion [9], for example. Vehicle routing in Green Pickup-and Delivery problems (GPD), however, are
particularly constrained with limited fuel (battery) capacity, thus shorter traveling range, and with
limited availability of refueling (battery-charging) infrastructure providing wide-area coverage for
these vehicles [10–12].

Various algorithmic techniques for solving GPDs have been developed in the past decade. With
an assumption that GPD is computationally intractable, either these algorithms are incomplete ones
based on approximation or heuristics (for example, see the evolutionary algorithm proposed in [13],
the genetic algorithm proposed in [14], and simulated annealing in [15]), or they can only be applied
to some special cases (e.g., [16–18]).

An inherent intractability of these green components in vehicle routing is recently revealed in
[19], where several highly-restricted, but non-trivial, subproblems of GPD were analyzed, with a
conclusion that all these problems are NP-hard. Nevertheless, when the task graph of a GPD is
with the so-called ring structure, GPD is actually only weakly NP-hard, (i.e., it is NP-hard, but a
pseudo-polynomial time complete algorithm has also been identified for the problem).

GPD on ring structures (called RING problems in the paper) serves as an important special case
of vehicle routing for achieving tasks of entity picking-up and delivery. More specifically, a ring
structure exists as a core component in many real-world settings where

• distribution facilities or units are restricted to a few suppliers only (from which to pickup
entities), and a few customers only (to which entities are delivered), and

2

• a plurality of these facilities are deployed in approximately a ring configuration (or a supply
chain, in the context of business operation management)

To better understand the underlying computational challenge associated with GPDs and RINGs,
we perform in this paper a comprehensive complexity analysis on several RING variants. We work
on two natural directions towards obtaining RING tractability: Control the maximal volume of task
flows allowed in the ring structure, i.e., applying restrictions on δ the ring-width; And limit the
total number of participating facilities deployed in the ring configuration, i.e., using a bounded λ on
the ring-length. From both the δ-direction and the λ-direction, we show how RING can cross over
the two complexity boundaries: one between weakly and strongly NP-hard, and the other between
tractable and intractable in general (illustrated in Figure 5). A greedy algorithm is proposed to show
the polynomial-time solvability of RING problems restricted to two participating facilities only (that
is, length λ equals 2, but the width δ is not bounded). Correctness of the greedy algorithm is proved.

The remainder of this paper is organized as follows. Section 2 provides the preliminaries. Com-
plexity and algorithmic analysis for the RING problems are presented next in Section 3. Section 4
summarizes the paper.

2. Preliminaries

In this section, GPD and its RING variants are defined first. Several NP-complete problems
(PARTITION(2), PARTITION(3), 3PARTITION, N3DM), which would be used in the proofs of
this paper, are then briefly reviewed.

2.1. GPD and Its RING Variants

We define GPD and several variants constrained on ring structures: GPDκ, and RING(δ, λ),
where κ, δ and λ are variables. In a general Pickup-and-Delivery problem (PD), a set of routes are
constructed for vehicles to transport goods or passengers from their origin cities to destination cities
[1]. In a GPD, PD further is subject to refueling constraints on its vehicles. That is, how far a vehicle
in a GPD can travel on road is proportional to its fuel-tank capacity. Hence, visiting fuel stations
are not tasks required to be completed, but actions necessarily to be taken before fuel tanks of these
vehicles are empty.

Definition 1. In a GPD1, the followings are given.
• A set C of cities;
• A single vehicle vhl, with a fuel-tank capacity f c ∈ N;
• A single depot ∈ C, where vhl starts/finishes (i.e., origin city and destination city are the

same), and the city also serves as the only fuel station for vhl;
• A set T of tasks. Given task T = ⟨Cp, Cd, fp,d⟩ ∈ T , specifically a one-unit entity (goods

or passenger) needs to be picked up from Cp and delivered to Cd, and fuel consumption of
vhl travelling from Cp to Cd is fp,d;

Tasks can be straightforwardly defined on a weighted, directed graph G = ⟨C, T ⟩, where vertices,
edges, and weights in G correspond to cities, tasks, and actual fuel consumptions to accomplish
these tasks, respectively. A walk in the graph leaving and finishing at the depot such that all tasks in
T are traversed corresponds to an Euler Tour2 in the graph G. An Euler Tour is fuel-feasible if the
tour also satisfies the fuel-capacity constraint applied on vhl. Since an Euler Tour might consist of
several closed trails explored in a sequence, this fuel-feasibility equals the requirement of

1Since this paper elaborates on the line dividing tractable and intractable of GPD, the definition presented here is already a
highly restricted variant of GPD (but NP-hard).
2We use standard definitions in graph theory: A trail is a walk in a graph with no repeated edge; A trail is closed if its two
end-nodes are the same; An Euler Tour of a graph is a closed trail (or a sequence of closed trails) containing all edges in the
graph.

3

Ca

Cb

Cc

Cd

t1(2)

t4(1)

t7(1)

t2(2)

t5(1)

t8(1)

t3(4)

t6(2)

(a) A General Task Graph

Ce

Cf

Ca

Cb

Cc

Cd

(b) Ring

Figure 1. Two example GPD task graphs. (a) A general example with a fuel-feasible Euler Tour
highlighted. City Ca is the only depot, and the only fuel station, for the only vehicle. The tour consists
of a first trail (in blue color, with fuel consumption 8) and a second trail (in violet, fuel consumption
6). (b) An example ring graph, whose width equals 4, and length equals 6. Ca is the only depot and
the only fuel-station.

fTR ≤ f c, for each trail TR in ET.
INSTANCE: Let Θ = ⟨G, depot, f c⟩, where G = ⟨C, T ⟩.
QUESTION: Does there exist a fuel-feasible Euler Tour of G for the vehicle vhl?

The GPD example in Figure 1-(a) has four cities, from Ca up to Cd. The grey-color city Ca

is the only depot, and the only fuel station. There are eight tasks in T , from t1 up to t8. Fuel
consumptions traveling between cities to achieve these tasks are indicated in parentheses in the
Figure. Fuel capacity of the vehicle is 8. It is straightforward to determine whether a graph has
an Euler Tour: just check whether the in-degree and the out-degree for any city in the graph are
equal. For a GPD to have a solution, however, it has to have a fuel-feasible Euler Tour. Euler Tour
ET0 :[t1, t2, t3, t4, t5, t6, t7, t8] is a solution (illustrated in Figure (1-a)). It takes 8 fuel units to
walk the first trail [t1, t2, t3] (in blue color). After the first trail, the vehicle returns to Ca and gets
refueled, ready for its second trail [t4, t5, t6, t7, t8] (in violet color), which takes 6. Another Euler
Tour ET1 :[t4, t8, t1, t7, t5, t6, t2, t3], however, is not a solution. After the first trail [t4, t8], the
vehicle returns to Ca, even if it is refueled, it can not complete the second trail [t1, t7, t5, t6, t2, t3],
as it takes 12 fuel units, which is greater than the vehicle fuel capacity.

General GPD is intractable [19]. It is natural to consider cases, which are restricted on the
topology of the task graphs, leading particularly to the definition of the ring graphs. However, even
for these restricted GPD cases, it is known that the problem is at least weakly NP-hard [19].

Definition 2. GPDκ is a restricted GPD, where each city in the task graph of the problem has
in-degree=out-degree ≤ κ.

Definition 3. A task graph is a ring if all cities/nodes in the graph are singly-connected one after
another around a circle; Tasks are in one direction (“counter-clockwise” or “clockwise”). Maximal
total number of tasks between two cities of the graph defines ring width δ. Total number of cities in
the graph defines ring length λ.

Definition 4. RING(δ, λ) is a GPD whose task graph is a ring with width δ, and length λ.

Theorem 1. GPDκ is strongly NP-complete, for a general κ value, and for κ = 2. RING(2, λ) is
weakly NP-complete. (Theorems 2, 3, and 4 in [19]).

Accordingly, GDP for a general κ value, GDP for κ = 2, and the problem of RING(2, λ), these
three problems are represented as white rectangles in Figure 5. It is indeed implied that GPDκ should
also be NP-hard, if we already know that GPD2 is NP-hard. In [Tan and Huang, 2021]), however,
GPDκ is alternatively restricted into RING(2, λ), which is only weakly NP-complete. In this paper,
we investigate more closely regarding this complexity difference.

4

In the example of Figure 1-(a), κ actually equals 2. Figure 1-(b) is the task graph for RING(4, 6).
The width of the ring is 4, and the length is 6. City Ca is again the only depot/station in the example
of Figure 1-(b).

2.2. Relevant NP-complete Partition and Matching Problems

Several of the well-known NP-complete problems, in number partitioning and matching, are
reviewed in this section. Their relationships to each other are also briefly explained. These problems
are used in the current paper to perform reductions for proving NP-hardness results.

Definition 5. PARTITION(2) Given a multi-set A of positive integers3, is there a A′ ⊆ A such that
•
∑

a∈A′ a =
∑

a∈(A−A′) a?

Example 1. Given A = {1, 1, 3, 4, 5}, the set can actually be partitioned into A1 = {1, 1, 5} and
A2 = A−A1 = {3, 4}, while 1 + 1 + 5 = 3 + 4 = 7.

Definition 6. PARTITION(3) Given a multi-set A of positive integers, are there three disjoint sets
A1, A2, and A3 such that

(A1 ∪ A2 ∪ A3) ≡ A, and
∑

a∈A1
a =

∑
a∈A2

a =
∑

a∈A3
a?

Example 2. Given A = {1, 2, 3, 4, 5}, the set can actually be partitioned into three disjoint sets
A1 = {1, 4}, A2 = {2, 3}, and A3 = {5}, while 1 + 4 = 2 + 3 = 5.

Definition 7. 3PARTITION Given a multi-set A of 3m positive integers, a bound B such that
B/4 < a < B/2, for all a ∈ A; and

∑
a∈A a = mB.

Can the set A be 3-partitioned into m disjoint sets A1,A2, . . . ,Am such that, for 1 ≤ i ≤ m,∑
a∈Ai

a = B?

Example 3. Given a set A = {9, 9, 9, 9, 10, 10, 11, 11, 11, 12, 13, 14}, an integer m = 4, and a
bound B = 32. It is the case

∑
a∈A a = 4×32 = 128, and for any integer a ∈ A, 8 < a < 16. The

set A can be 3-partitioned into 4 disjoint sets A1 = {9, 9, 14}, A2 = {9, 10, 13}, A3 = {9, 11, 12},
A4 = {10, 11, 11}, and for 1 ≤ i ≤ 4,

∑
a∈Ai

a = 32 = B.

Definition 8. Numerical 3Dimensional Matching (N3DM) Three multi-sets W , X , and Y each
containing m non-negative integers, and a positive-integer bound B, are given. Can W ∪X ∪Y be
partitioned into m disjoint sets A1, A2 . . . Am such that

• each Ai contains exactly one number from each one of these three sets and
• for 1 ≤ i ≤ m, the sum of all the elements in Ai equals B?

Example 4. Let m = 4, B = 32, and we are given three sets: W = {9, 9, 9, 10}, X =
{9, 10, 11, 11}, Y = {11, 12, 13, 14}. These three sets can be partitioned into m = 4 disjoint
sets: A1 = {9, 9, 14}, A2 = {9, 10, 13}, A3 = {9, 11, 12}, A4 = {10, 11, 11}; It is the case for
each 1 ≤ i ≤ 4, we have

∑
a∈Ai

a = 32 = B.

3PARTITION and N3DM are strongly NP-complete and PARTITION(2) is weakly NP-complete
([SP15], [SP16] and [SP12] in [20]). We also have the following results.

Theorem 2. The problem PARTITION(3) is at least weakly NP-complete4.

Proof. In short, a set A in a PARTITION(2) problem instance can be transformed into a set A′,
which is a PARTITION(3) problem instance, by adding into A a number whose value equals (1/2)×(∑

a∈A a
)
, assuming w.l.o.g. that

(∑
a∈A a

)
is an even number. □

3In this paper, integers in sets are integer-objects, thus one same integer value can have multiple distinct objects.
4We emphasize here the difference between PARTITION(3), which is weakly NP-complete, and 3PARTITION, which is
strongly NP-complete.

5

Ca Cb Cc Cd Ce Cf Cg Ch Ci Cj Ck Cl

9 9 9 9 10 10 11 11 11 12 13
14

Figure 2. The RING(δ, λ) instance created from transforming a 3PARTITION problem instance
(which is strongly NP-hard): A = {9, 9, 9, 9, 10, 10, 11, 11, 11, 12, 13, 14} (Example 3). The city
Ca is the only depot city and the only fuel station. The only vehicle in the example has a fuel ca-
pacity 32. Fuel consumptions to achieve these tasks are labeled accordingly on top of these tasks
Tasks not associated with numbers have zero fuel-consumption. A solution to RING(δ, λ) is high-
lighted using different colors. The solution Euler Tour contains four trails: The black trail taking 12
tasks {9, 9, . . . , 14} (with nine zero-tasks in between), the green trail {0, 0, 9, 0, 10, . . . , 13, 0}, the
violet trail consisting 12 tasks in the sequence {0, 0, 0, 9, 0, 0, 11, 0, 0, 12, 0, 0}, and the blue trail
{. . . , 10, 0, 11, 11, . . .} (skipped in between are zero tasks).

The result can be generalized into k, where k is any positive integer.

Theorem 3. The PARTITION(k) problem, where k is an integer, is at least weakly NP-complete.

Proof. Again we use PARTITION(2) to perform the transformation. Given the set A, we now add
(k − 2) values all equaling (1/2) ×

(∑
a∈A a

)
into A to build up A′. It is the case A can be

partitioned evenly into two subsets iff A′ can be partitioned evenly into k subsets. □

3. Complexity Analysis

In this section, we show RING(δ, λ) and RING(δ, 3) are strong NP-complete (Theorem 4 and
Theorem 5, respectively). However RING(3, λ) is only weakly NP-complete (Theorem 6). Mean-
while, a polynomial time greedy algorithm, for RING(δ, 2), is presented (Theorem 8).

3.1. Intractability of RINGs

Theorem 4. RING(δ, λ) is strongly NP-complete.

Proof. 5 RING(δ, λ) is in NP. It runs in time polynomial to the problem size, to verify whether a
sequence of pickup-and-delivery tasks in a RING(δ, λ) is a solution to a given problem instance.
NP-hardness. We perform a poly-time transformation from 3PARTITION. Given a 3PARTITION
instance ⟨m,A, B⟩, we need to create an instance Θ = ⟨G, depot, f c⟩ in RING(δ, λ). We use
Example 3 to illustrate the transformation. In Θ, the fuel-tank capacity of the only vehicle v ∈ V
equals B (i.e., the sum of all integers in A, divided by m). Hence, in the resulting Θ, the capacity
for the only vehicle is 32. In total |A| = 12 cities are introduced in the set C of G. Pictorially
(shown in Figure 2) assume all these cities are aligned in a row from left to right, there exist exactly
m = 4 pickup-and-delivery tasks from a given city to its right neighbor. To distinguish these four
tasks we call them a “top” task, a “higher” task, a “lower” task, and a “bottom” task. In addition,
there are four pickup-and-delivery tasks from the rightmost city (Cl in Figure 2) to the leftmost
city (Ca in Figure 2). No other tasks are introduced in Θ. All tasks other than the “top” ones
need zero fuel consumption6. All the numbers in the set A are one-on-one and onto mapped to the
fuel consumption of “top” tasks. For the sake of convenience, these numbers are arranged into an
ascending order in Figure 2. The leftmost city is the only depot city where the vehicle starts/finishes,
and the city is the only fuel station in Θ. Given A, the resulting RING(δ, λ) instance is shown in
Figure 2. Transformation is complete.

5Transformation for proving the NP-hardness is explained by detailing an intuitive example, which saves us from presenting
actually a formal construction.
6A task with zero fuel consumption might not be a reasonable reflection of real world. However, we can always add a fixed
value to all the tasks in the transformed task graph, with certainly the validity of the transformation preserved.

6

Note that, ignoring the fuel consumption constraint, vehicle vhl can finish an Euler Tour leaving
and returning to Ca for four times in Figure 2. The tour consists of four trails (name them respec-
tively, the first, second, third, and the fourth trail). Each trail will achieve exactly one of the four
(top, higher, lower or bottom) tasks between two cities. The remaining tasks construct the second,
third, and the fourth trails, and etc. As shown in Figure 2, an Euler Tour (with depot/fuel_station
Ca) consists of four trails (highlighted in black, green, violet, and blue, respectively).

For the NP-hardness part we prove that there exists a 3PARTITION to the multi-set A iff a
vehicle starting from Ca can accomplish all tasks, returning eventually to Ca with the fuel capacity
constraint applied on Ca satisfied.

(⇒): If there exists a 3PARTITION to A, each Ai corresponds to three “top” tasks, and we assign
all these three tasks to one single trail. All the other (m − 3) tasks in the trail would be the zero
fuel-consumption ones. If between two cities, a task to be taken by the task is not a “top” one, any
of the (higher, lower, bottom) tasks would work. In doing so, we can construct exactly m trails.
Each trail is fuel-feasible, since the capacity of the vehicle is B, which actually equals to the fuel
consumption for all the tasks in the trail (including the three “top” ones) added up. Connecting all
these trails together, we construct an Euler Tour with the fuel-capacity constraint B applied to all
the m trails satisfied. That is, there exists a solution in the transformed RING(δ, λ) instance Θ.

(⇐): If there exists a solution for the transformed Θ instance (i.e., an Euler Tour with the fuel
consumption constraint satisfied), the Euler Tour solution must contain m trails. Particularly we can
prove that
1) Each trail in the Euler Tour contains exactly three “top” tasks. If all “top” tasks are evenly
distributed among trails, each trail will take exactly 3 “top” tasks (as we have 3m tasks and m trails).
If any trail takes less than 3 “top” tasks, it necessarily means at least one of the other (m − 1) trail
(say TRk) will contain at least four “top” tasks. Back in the 3PARTITION instance, we have that for
all a ∈ A, B/4 < a < B/2, hence fuel-consumption for TRk must be greater than 4× (B/4) = B.
TRk is not fuel-feasible and the corresponding Euler Tour is not a solution, a contradiction.
2) Each trail consumes exactly B units of fuel. Fuel consumption for all trails is added up to (m×B).
If each trail consumes exactly B, then the numbers would add up to mB. If any trail consumes a
number that is less than B, it necessarily means that some another trail (say TRk) consumes more
than B. But this means that TRk is infeasible and the Euler Tour is not a solution, a contradiction.

From 1) and 2), we can conclude that a solution to Θ contains m trails, each trail contains three
“top” tasks, and the fuel consumption for these three “top” tasks added up equals B. This means
that there exists a solution to the original 3PARTITION instance.
NP-completeness in the strong sense. The transformation is bounded by δ, λ. RING(δ, λ) is
strongly NP-complete. This is also implied by the fact that the original problem 3PARTITION
is strongly NP-hard. □

Theorem 5. RING(δ, 3) is strongly NP-complete.

Proof. RING(δ, 3) is in NP: It runs in time polynomial to the problem size, to verify whether a
sequence of pickup-and-delivery tasks in a RING(δ, 3) is a solution to a given problem instance.
NP-hardness. NP-hardness can be proved through a straightforward transformation from N3DM,
which is strongly NP-complete. From an instance ⟨m,W,X ,Y, B⟩ in N3DM, an instance Θ =
⟨G, depot, f c⟩ in RING(δ, 3) is created. We use Example 4 to illustrate the transformation (the
resulting task graph in Θ is shown in Figure 3). In Θ, the fuel-tank capacity of the only vehicle
equals B = 32 (which is the sum of all integers in all the three sets, divided by m = 4). In total
three cities Ca, Cb and Cc are introduced and they are aligned in a row from left to right, as shown in
Figure 3. There exist exactly m = 4 pickup-and-delivery tasks from a given city to its right neighbor:
“top”, “higher”, “lower”, and “bottom”. In addition, there are four pickup-and-delivery tasks from
city (Cc in Figure 3) to city (Ca in Figure 3). No other tasks are introduced in Θ. In the order of
W , X , and Y , all the numbers in each one of these three sets are one-to-one and onto mapped into
tasks between these three cities. City Ca is the only depot city where the vehicle starts/finishes, and

7

Ca Cb Cc

9
9
9
10

9
10
11
11

111213
14

Figure 3. The RING(δ, 3) instance created from transforming an instance of the N3DM problem
(which is strongly NP-hard): W = {9, 9, 9, 10}, X = {9, 10, 11, 11}, Y = {11, 12, 13, 14}
(Example 4). The city Ca is the only depot city and the only fuel station. The only vehicle in the
example has a fuel capacity 32. Fuel consumptions to achieve these tasks are labeled accordingly. A
solution is highlighted using different colors. It contains four trails: The black trail taking tasks of
{9, 9, 14}, the green trail taking tasks of {9, 10, 13}, the violet trail {9, 11, 12}, and the blue trail
{10, 11, 11}.

the only fuel station in Θ. Given the N3DM instance, the resulting RING(δ, 3) instance is obtained,
and shown in Figure 3. Transformation is complete. The solution in the figure is again highlighted
in black, green, violet, and blue colors, respectively, referring to four feasible trails in the solution
(an Euler Tour).

A N3DM problem instance ⟨m,W,X ,Y, B⟩ exists a solution iff a vehicle starting from Ca can
accomplish all tasks, returning eventually to Ca with the fuel capacity constraint applied on Ca

satisfied. The (⇒) direction is straightforward and is skipped here.
For the (⇐) direction, we prove that existence of an Euler Tour solution in Θ implies that

⟨m,W,X ,Y, B⟩ has a solution. For each trail TR in Θ the fuel consumption can not be exceeding
B, in order to be feasible. Meanwhile, it can not be less than B. Since the overall requirement on
consumption for all the m trails are m×B, if fuel consumption for TR is less than B, it necessarily
means that fuel consumption for some another trail in Θ would be greater than B, which is infeasi-
ble. Hence, the fuel consumption for each trail in Θ is exactly B, but all these trails define a solution
in the original N3DM problem instance.
NP-completeness in the strong sense. Since the transformation remains to be bounded by δ,
RING(δ, 3) remains to be strongly NP-complete. This is also implied by the fact that the origi-
nal problem N3DM is strongly NP-hard. □

Theorem 6. RING(3, λ) is weakly NP-complete.

Proof. NP-hardness, at least weakly. We use the weakly NP-complete PARTITION(3) (Theorem
2) to perform the transformation7. For RING(3, λ). Figure 4 illustrates a transformation using
Example 2, where the set A = {1, 2, 3, 4, 5} is given, and it can actually be partitioned into three
disjoint sets A1 = {1, 4}, A2 = {2, 3}, and A3 = {5}. Accordingly there are three trails in the
transformed RING(3, λ) instance (Figure 4). It holds in general, A can be partitioned evenly into
three subsets iff the transformed RING(3, λ) has a solution.
A psedo-polytime algorithm (hence actually NP-hard only in the weak sense). Additionally we
can construct a city-fuel table (similar to the one constructed in [19]) and use a pseudo-polynomial
time dynamic-programming algorithm to check for a solution, after the table is filled. □

Since weakly NP-completeness can be generalized, from PARTITION(2,) to PARTITION(3)
(Theorem 2), and then to PARTITION(k) (Theorem 3), naturally we have the following result (actual
proof skipped).

Corollary 7. RING(k, λ), where k is any positive integer, is weakly NP-complete.

Moving towards the direction from RING(2, λ) to RING(3, λ), and RING(k, λ), we are as-
sured that RING(3, λ) must be at the least weakly NP-hard. However it is not possible at the point

7The proof is similar to Theorem 4 in [19], where RING(2, λ) is shown to be weakly NP-complete.

8

Ca Cb Cc Cd Ce

0

1
0

0

0
2

0

0
3

0

4
0

0 0

5

Figure 4. The RING(3, λ) instance created from transforming a PARTITION(3) problem instance
(which is only weakly NP-hard): A = {1, 2, 3, 4, 5} (Example 2). The city Ca is the only depot city
and the only fuel station. The only vehicle in the example has a fuel capacity 5. Fuel consumptions to
achieve these tasks are labeled accordingly. A solution is highlighted using different colors. It contains
three trails: The black trail taking tasks of {0, 0, 0, 0, 5}, the violet trail of {1, 0, 0, 4, 0}, and the blue
trail of {0, 2, 3, 0, 0}.

Algorithm 2 A RING(δ, 2) Solver

Input: Θ = {CL, CR,A,B, depot ≡ CL, f
c}

Output: Boolean variable result

1: Set result to true;
2: Define A ≡ A0, and B ≡ B0;
3: Sort all tasks in A in decreasing order a1, . . ., aδ;
4: for (each task ai ∈ A, from a1 to aδ) do
5: Search for b̂ from B(i−1) such that

• (ai + b̂) ≤ f c; and
• for any b̄ ∈ B(i−1):

[(
(ai + b̄) ≤ f c

)
=⇒ (b̂ ≥ b̄)

]
;

6: if (b̂ does not exist) then
7: Set result to false;
8: Break the while loop;
9: end if

10: end for
11: Remove task ai from A(i−1) to construct Ai;
12: Remove task b̂ from B(i−1) to construct Bi;
13: Return result

to conclude that the problem is in fact strongly NP-hard. Theorem 6 thus enable us to draw the first
dashed-line in Figure 5, which divides the Strongly and the Weakly NP-completeness.

3.2. A Greedy Algorithm

Theorem 8. RING(δ, 2) is polynomial time solvable.

Proof. We present a greedy algorithm which solves RING(δ, 2) in polynomial time. An input in-
stance to the algorithm has two cities, the left city CL and the right city CR. Set A contains δ
pickup-and-delivery tasks, from CL to CR. Set B contains another set of δ tasks, from CR back to
CL. City CL is the station/depot for the only vehicle vhl. Fuel capacity for vhl is f c. The algorithm
returns a Boolean value result to indicate whether the input RING(δ, 2) problem instance has a
solution.

Respectively Algorithm 2 first copies A to A0, and copies B to B0. It then sorts all the tasks in
A in decreasing order, from a1 to aδ . The algorithm goes through these tasks one iteration at a time
using a for-loop, generating sets {A1,B1}, . . ., {Aδ,Bδ} one at a time. If the loop finishes with all
δ iterations performed completely, variable result, which is initialized to “true”, remains “true”,
and Sets {Aδ,Bδ} will be generated and they are empty sets.

9

At the ith iteration, ai is removed from Ai−1 to create Ai, and b̂ is removed from Bi−1 to create
Bi (line 10-11). Among all tasks in Bi−1 who can be picked up right after task ai to construct a
fuel-feasible trail from CL to CR then back to CL, b̂ is the one with maximal fuel consumption
value (line 5, the actual greedy part of the algorithm). At any iteration, if b̂ does not exist, result
will be set to false (i.e., the problem instance is not solvable), and the algorithm breaks the loop and
terminates right away.
Time complexity. The algorithm runs in O(δ log δ): It contains a O(δ log δ) time sorting step, on
δ tasks in A. A loop for maximally δ iterations, and each iteration i involves a O(log δ) binary
searching for the b̂ in the set Bi (assuming Bi is also sorted).
Correctness. We prove that RING(δ, 2) has a solution iff Algorithm 2 returns “true”. If Algorithm
2 returns “true”, obviously it implies the existence of a solution to the problem. What is not imme-
diately clear is the other direction: If a solution exists, Algorithm 2 will necessarily return “true”.

But we reason that, if a solution does exist, after the ith iteration, the algorithm can be expanded
to a solution using tasks that have not been considered (in Ai), and the tasks in Bi. Hence when the
algorithm terminates, necessarily all the tasks in A will be one-on-one and onto matched to all the
tasks in B. In other words, the algorithm actually finishes with a solution to the problem.

We can formalize the reasoning using mathematical induction over δ w.r.t. a RING(δ, 2) instance
Θ = {CL, CR,A,B, depot ≡ CL, f

c}, with the definition of promising in the following:

Definition 9. The pair {Ai,Bi} is promising after iteration i in Algorithm 2, if using all the tasks in
Ai (in total (δ − i) of them), and all the tasks in Bi (also in total (δ − i) of them), we can construct
in total (δ − i) trails, between CL and CR.

Lemma 9. Assume that a given RING(δ, 2) has a solution. Let Ai and Bi be the two sets generated
after the ith iteration (for 0 ≤ i ≤ δ) in Algorithm 2, assuming that the ith iteration is complete,
thus line 10-11 are executed, and Ai and Bi are generated. Let P (i) be the statement of “After the
ith iteration, the sets Ai and Bi can be generated, and {Ai,Bi} is promising”. P (i) holds for every
i, where 0 ≤ i ≤ δ.

Base case. P (0) holds because we start with A ≡ A0, and B ≡ B0, and it is assumed that the
instance has a solution, which is equivalent to the statement that using tasks in the original A and B,
a solution can be constructed.

Induction step. Let 0 ≤ i < δ and we show that, if P (i) holds, P (i+ 1) will also hold. At iteration
(i+1) we consider task a(i+1) and remove it from Ai to create A(i+1). Regarding b̂ in Bi, there are
exactly three cases possible:
Case One. There does not exist any task b̂ ∈ Bi satisfying (a(i+1)+ b̂) ≤ f c. This is impossible, be-
cause we have P (i), hence {Ai,Bi} is promising in terms of finding eventually a solution including
certainly matching a task b̂, for a(i+1).
Case Two. There exists a b̂ ∈ Bi such that (a(i+1) + b̂) ≤ f c, and for any b̄ ∈ Bi,[(

(a(i+1) + b̄) ≤ f c
)

=⇒ (b̂ ≥ b̄)
]
,

and P (i+ 1) holds, but this means the resulting {A(i+1),B(i+1)} is still promising.
Case Three. There exists a b̂ ∈ Bi such that (a(i+1) + b̂) ≤ f c, and for any b̄ ∈ Bi,[(

(a(i+1) + b̄) ≤ f c
)

=⇒ (b̂ ≥ b̄)
]
,

but P (i + 1) does not hold. In other words, after removing a(i+1) from Ai to create A(i+1), and
removing b̂ from Bi to create B(i+1), the resulting {A(i+1),B(i+1)} is no longer promising. Nev-
ertheless, given that {Ai,Bi} is promising, {Ai,Bi} will lead to a solution to the problem, say S.
The following two statements must be valid in S:

10

• a(i+1) ∈ Ai is matched to some b̄ ∈ Bi, where b̄ ≤ b̂ must hold (remember that the
algorithm is greedy);

• b̂ is matched to some ā ∈ Ai, where ā ≤ a(i+1) must hold (remember that all the tasks in
A are sorted in decreasing order).

We accordingly define Salt, which is an alternative to S. Salt differs from S only in the following
two matchings:

• a(i+1) is instead matched to b̂ in Salt;
• ā is instead matched to b̄ in Salt;

Since ā ≤ a(i+1), b̄ ≤ b̂, and the trail of a(i+1) followed by b̂ is fuel-feasible, it is the case the trail
of ā followed by b̄ must also be fuel-feasible. Hence Salt must also be a solution to the problem.
That is, removing a(i+1) from Ai to create A(i+1), and removing b̂ from Bi to create B(i+1), the
resulting {A(i+1),B(i+1)} remains to be promising. That is, P (i+ 1) also holds for Case Three.

We have proved Lemma 9: If a RING(δ, 2) problem instance has a solution, we will always
obtain P (δ) from running Algorithm 2 on RING(δ, 2), with two empty sets Aδ and Bδ generated,
which means, if a solution exists to the problem, Algorithm will return “true”. □

Example 5. Given cities CL (depot) and CR, three tasks A = {6, 4, 4} from CL to CR, three other
tasks B = {4, 3, 1} from CR to CL. When the fuel capacity f c is 8, the example has a solution: 1st
trail (6, 1), 2nd trail (4, 4), and 3rd trail (4, 3). However if f c is reduced to 7, the algorithm will
return false after the two trails (6, 1) and (4, 3). Meanwhile, the example does not have a solution.

Theorem 10. RING(∆,Λ) is polynomial-time solvable.

Proof. Trivially in O(1), as both ∆ the width, and Λ the length of the problem, are constants. □

4. Conclusion

This paper studies the Green Pickup-and-Delivery problems from complexity-theoretic perspec-
tive, with a focus on the GPDs whose task graphs are on ring structures. Through tweaking on the
values of the width and the length, of the rings in RINGs, several complexity results, either tractable
or intractable, are obtained. Relationships between these results are pictorially summarized in Figure
5, where arrows connect problems to their restricted variants. Two dashed lines in the figure respec-
tively separate among the defined RING problems, strongly and weakly NP-hard, and intractable
and polynomial-time solvable.

These new results deepen our understanding of the green intractability in vehicle routing. For
example, they confirmed the relevance of restricting the topology of task graphs for reducing GPD
computational complexity in vehicle routing for entity picking up and delivery.

Availability of these results particularly enhances our knowledge on computational properties of
RING problems. We now have quantitative measures regarding how to achieve RING tractability
through applying restrictions on either the width or the length of rings in RING problems. Specifi-
cally we observe that

• when λ is a variable, RING remains to be weakly NP-complete, for δ = 2, 3, 4, . . . , k;
However

• when δ is a variable, RING is strongly NP-complete when λ = 3, but polynomial-time
solvable when λ = 2.

Being able to separate weakly/strongly NP-hard GPDs has valuable implications. For GPD prob-
lems which are only weakly NP-hard, we remark that although pseudo-polynomial time algorithms
go exponential with the input size of f c, it is reasonable, however, to assume that the fuel capacity
of vehicles are always small in their values, making it practical to use these algorithms to address
real-world problems, and to develop applications.

11

GPDκGPD2

RING(δ, λ) RING(δ, 3)

Strongly NP-complete
Weakly NP-complete

RING(k, λ)

RING(3, λ)

RING(2, λ)

RING(δ, 2)

RING(∆,Λ)

Polynomial time

Theorem 1Theorem 1

Theorem 1

Theorem 4

Theorem 6

Corollary 7

Theorem 5

Theorem 8

Theorem 10

Figure 5. Computational hierarchy of restricted GPD/RING problems. Arrows connect problems
to their restricted variants. In GPDκ, the degree of nodes in its task graph is bounded by κ. In
RING(δ, λ), width, and length, of the task ring are δ and λ, respectively. The parameters ∆ and Λ in
RING(∆,Λ) are constants. Theorems 4-6, Corollary 7, and Theorem 8, 10 are newly-obtained results
(highlighted in grey-color). The dashed line between RING(k, λ) and RING(3, λ) highlights the fact
that as long as the width is kept as a constant, the problem is only weakly NP-hard.

Modern dispatching systems often face the situation where multiple inventories need to be ex-
changed or transited between two major clusters or distribution centers (to avoid splitting of one
order into multiple shipments, or to meet the safety stock requirements, for example). In correspon-
dence, such a situation naturally can be modelled/approximated as a RING(δ, 2) problem to solve.
Polynomial-time solvability of RING(δ, 2) as identified in this paper (Theorem 8) provides critical
insight in support of the development and evaluation of real-world applications as such. Further, the
greedy algorithm itself can be conveniently adjusted to solve an optimization variant to RING(δ, 2),
with numeric minimizaion/maximization objectives in general sense considered (not just referring
to the vehicle fuel consumption). Finally, as part of our future work, we will investigate how to use
the new insights obtained from this research, for design and development of algorithms efficient in
practice for solving GPD/RING problems (e.g., heuristics, meta-heuristics, approximation, etc).

Acknowledgements

We are thankful to anonymous reviewers for their feedback and suggestions. This work was sup-
ported by a start-up research fund from the Faculty of Science and Environmental Studies, Lakehead
University, a research opportunity grant from Social Sciences and Humanities Research Council of
Canada (SSHRC), and a discovery grant from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC).

12

References

[1] M. Savelsbergh and M. Sol. “The General Pickup and Delivery Problem”. In: Transportation Science
29.1 (1995), pp. 17–29.

[2] P. Toth and D. Vigo. Vehicle Routing: Problems, Methods, and Applications. SIAM, 2014.
[3] X. Tan and J. Huang. “On Computational Complexity of Pickup-and-Delivery Problems with Precedence

Constraints or Time Windows”. In: Proc. of the 28th IJCAI. 2019, pp. 5635–5643.
[4] B. Coltin and M. Veloso. “Scheduling for Transfers in Pickup and Delivery Problems with Very Large

Neighborhood Search”. In: Proc. of the 28th AAAI. Québec City, Québec, Canada, 2014,
pp. 2250–2256.

[5] M. L. Gini. “Multi-Robot Allocation of Tasks with Temporal and Ordering Constraints.” In: Proc. of the
31st AAAI. 2017, pp. 4863–4869.

[6] C. Zhang and J. A. Shah. “Co-Optimizating Multi-Agent Placement with Task Assignment and Sched-
uling”. In: Proc. of the 25th IJCAI. 2016, pp. 3308–3314.

[7] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker, J. Li, D. Atzmon, L. Cohen, T. K. S.
Kumar, R. Barták, and E. Boyarski. “Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks”.
In: Proc. of the 12th SOCS. AAAI Press, 2019, pp. 151–159.

[8] O. Salzman and R. Stern. “Research Challenges and Opportunities in Multi-Agent Path Finding and
Multi-Agent Pickup and Delivery Problems”. In: Proc. of the 19th AAMAS. 2020, pp. 1711–1715.

[9] F. Bistaffa, A. Farinelli, and S. D. Ramchurn. “Sharing Rides with Friends: A Coalition Formation
Algorithm for Ridesharing”. In: Proc. of the 29th AAAI. Austin, Texas, 2015, pp. 608–614.

[10] S. Erdoğan and E. Miller-Hooks. “A Green Vehicle Routing Problem”. In: Transportation Research Part
E: Logistics and Transportation Review 48.1 (2012), pp. 100 –114.

[11] E. Demir, T. Bektaş, and G. Laporte. “A review of recent research on green road freight transportation”.
In: European Journal of Operational Research 237.3 (2014), pp. 775 –793.

[12] T. Bektaş, E. Demir, and G. Laporte. “Green Vehicle Routing”. In: Green Transportation Logistics: The
Quest for Win-Win Solutions. Springer International Publishing, 2016, pp. 243–265.

[13] J. Jemai, M. Zekri, and K. Mellouli. “An NSGA-II Algorithm for the Green Vehicle Routing Problem”.
In: Evolutionary Computation in Combinatorial Optimization. Ed. by J.-K. Hao and M. Middendorf.
Springer Berlin Heidelberg, 2012, pp. 37–48.

[14] Y. Xiao and A. Konak. “A genetic algorithm with exact dynamic programming for the green vehicle
routing & scheduling problem”. In: Journal of Cleaner Production 167 (2017), pp. 1450 –1463.

[15] Çağrı Koç and I. Karaoglan. “The green vehicle routing problem: A heuristic based exact solution ap-
proach”. In: Applied Soft Computing 39 (2016), pp. 154 –164. ISSN: 1568-4946.

[16] Y. Xiong, J. Gan, B. An, C. Miao, and A. L. C. Bazzan. “Optimal Electric Vehicle Charging Station
Placement”. In: Proc. of the 24th IJCAI. Buenos Aires, Argentina, 2015, pp. 2662–2668.

[17] H. C. Lau, L. Agussurja, S.-F. Cheng, and P. J. Tan. “A Multi-objective Memetic Algorithm for Vehi-
cle Resource Allocation in Sustainable Transportation Planning”. In: Proc. of the 23rd IJCAI. Beijing,
China, 2013, pp. 2833–2839.

[18] J. Eisner, S. Funke, and S. Storandt. “Optimal Route Planning for Electric Vehicles in Large Networks”.
In: Proc. of the 25th AAAI. 2011.

[19] X. Tan and J. Huang. “A Complexity-theoretic Analysis of Green Pickup-and-Delivery Problems”. In:
Proc. of the 35th AAAI. 2021, pp. 11990–11997.

[20] M. Garey and D. Johnson. Computers and intractability - a guide to NP-completeness. W.H. Freeman
and Company, 1979.

	1. Introduction
	2. Preliminaries
	2.1. GPD and Its RING Variants
	2.2. Relevant NP-complete Partition and Matching Problems

	3. Complexity Analysis
	3.1. Intractability of RINGs
	3.2. A Greedy Algorithm

	4. Conclusion
	Acknowledgements
	References
	References

