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Abstract. Soil classification is an important but challenging problem for the re-

search community. As such, current solutions for classifying soil for a wide va-

riety of reasons are out of the reach of hobbyists and the small research firms. 

This research study focuses on comparing various machine learning algorithms 

on a custom database generated from Canadian System for Soil Classification 

(CSSC) attributes to reveal a solution for identifying a soil Pedon. Discussion 

centres around acquainting the user with soil terminology, current solutions to 

the problem of soil classification, and the proposed solution. A database using 

these attributes was constructed, and six algorithms were analyzed using valida-

tion, test case, and 70-30 split testing via WEKA. Among the comparing algo-

rithms, the Hoeffding decision tree was found to perform best, and it was subse-

quently used in developing a simple prototype using Java Graphical User Inter-

face (GUI). Finally, the Hoeffding decision tree was compared to the other algo-

rithms that were used to see why it was more accurate than its competitors.  

Keywords: Soil classification, artificial intelligence, machine learning, Hoeffd-

ing decision tree. 

1 Introduction 

Soils come in a diverse range of types and automatic classification of soil type is still 

challenging. The goal of this paper is to present a simplified soil classification scheme 

utilizing machine learning models that allow researchers and enthusiasts to ascertain 

the great group and order of a soil, based on several of its observable characteristics. 

Soil types differ from region to region, and even soil types themselves are guaranteed 

to have a range of properties depending on external factors that influence the soil’s 

composition (e.g., uneven weathering, climate, etc.). This makes the classification task 

difficult. In the context of this discussion, soil is defined naturally occurring 

unconsolidated mineral or organic material at least 10 cm thick that occurs at the earth’s 

surface and can support plant growth [1]. It does not include the bedrock or underlying 

lithospheric structure under the soil matrix itself.  

Despite the inherent complications when classifying soil, there are some universal 

guidelines that can assist in classification efforts. A square metre section of soil is 

termed a pedon, and every soil pedon has one or more soil horizons, labeled with the 

A, B, and/or C suffix as shown in Figure 1. The “A” horizons refer to topsoil, “B” 
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horizons are regolith, and “C” horizons are saprolites. Of course, there are some 

complications to this general arrangement. Soils with excessive organic matter have an 

“O” as their first horizon suffix. In addition, prefixes can be added onto the horizon 

letter to describe the soil horizon more accurately. For example, an Ae horizon is an A 

horizon characterized by clay, Fe, AI, or organic eluviation.  

 
Figure 1: Soil Pedon with O (Organic), A, B, and C Horizons. (NE Soil, N.D.) [2] 

Using horizon information, along with other soil properties, Agri-Food Canada 

began collecting soil data information in the early half of the 20th century. The purpose 

of classifying soils was (and still is) to provide a framework for formulating hypotheses 

about soil genesis and the response of soil to management [1]. Originally, each province 

relied on its own system of soil classification. In the mid 20th century, the National Soil 

Survey Committee (NSSC) [3] was formed, and standards were universalized. Agri-

Food Canada currently defines eleven soil orders spread across the country. There are 

broken into great groups (number thirty-one in total). Great groups are further broken 

down into sub-groups. 

In this paper, to find a simple and effective solution for soil classification, six mahine 

learning models were compared, which include J48 decision tree, random forest, Naive 

Bayes, Bayesian Net, K* (KNN), and Hoeffding tree. Along with the comparisons, a 

detailed and indepth investigation has been done into why the top performing algorithm 

appears to be more successful than the others. Finally, a working prototype has been 

developed and tested with the best performing algorithm using Java Graphical User 

Interface (GUI) which allows users to select soil properties based on their observations. 

The program runs the best performing algorithm and attempts to provide the user with 

the correct great group and soil order based on the data received by it from the user. 

This provides a simple and effective solution for soil classification for the end users. 

The prototype can be accessed and downloaded through the link: 

https://github.com/DakotaCS/CSSC-Application. 

2 Background 

Currently, industrial soil classification programs offered on the market are virtually 

inaccessible for small business owners, hobbyists, and small-scale research laboratories 

due to their price. Many programs offer far too many options, are prohibitively 

expensive, and/or require specialized equipment or personnel to operate. In addition, 

the programs are developed primarily in the USA and do not include any CSSC 

classifications – rendering them unsuitable in a Canadian context.  
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Compounding the problem is the fact that soil classification itself is a niche market. 

From research conducted for this report, only three programs were found that classified 

soil. GAEA’s WinSieve Grain Size and Soil Classification Software [4], while suited 

for geotechnical surveys when it comes to oil, gas, and mining operations, is 

prohibitively expensive running into thousands of dollars per license. Geosystems 

Software’s CLSuite v.4, a competitor, only includes USDA soil classifications and 

costs and is comparatively priced. Finally, the US Department of Agriculture’s Soil 

Data Viewer, while free, is woefully outdated. Mobile applications for classifying soils 

are effectively non-existent.   

From a literature standpoint, papers like Robertson [5] and Bhattacharya et al. [6], 

while providing theoretical groundwork and were helpful in choosing the algorithms 

and organizing the dataset, were deficient in a couple of areas. From using 

penetrometers to map stratigraphic profiles (a procedure that is too expensive to be 

incorporated here), to using machine learning to predict new values (the project aims 

to classify, not predict), the current academic literature did not appear to assist in 

finding a solution for the problem posed in any meaningful way.   

3 Soil Classification Framework 

3.1. Overview 

The need for a cost-effective soil classification system that deals with CSSC 

classifications should be apparent at this point. The solution proposed here includes a 

program that is easy to use, portable, and gives the user detailed feedback about the 

classification based on their choice of properties/attributes (see Figure 2). The program 

is meant to obtain a preliminary classification that can be verified later through official 

means (i.e., geotechnical survey completed by a licensed engineer). Having this 

knowledge available earlier in any planning process is beneficial and is where the 

program can best be used.  

 
Figure 2: Program Input/Output Sequence 

The experimental program collects data from the user, then runs a machine learning 

algorithm using training data and the user’s input. The result is a soil classification at 

the great group level. The soil order, great group, accuracy of the prediction, and other 

relevant information about that soil will be displayed to the user. The program is written 

in the Java programming language utilizing the Waikato Environment for Knowledge 
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Analysis (WEKA) API. To allow for future portability, Java was preferred as it is easily 

portable to the Android OS and is better in terms of performance in this context then 

languages like Python. Training data is obtained from a WEKA compatible *.arff 

database file. User input is collected via a series of textboxes (for numeric data) and 

combo boxes (for nominal data). 

3.2. Machine Learning Models for Soil Classification 

In terms of algorithms used in the classification scheme itself, six were chosen. The 

first, and most obvious choice, was the J48, C4.5 Decision tree algorithm [7]. 

Considered the workhorse of the data mining world, this algorithm is built off Quinlin’s 

ID3 tree concept [8] using the concept of information entropy. In a nutshell, the 

algorithm picks the attribute that is the most effective at splitting (the split is based on 

information gain) the sample sets into subsets, based on class enrichment.  

The second algorithm was the Random Forest [9]. In this scheme, multiple decision 

trees work together (termed an ensemble). Every tree makes a class prediction, and the 

Random Forest algorithm selects the class that has been outputted the most from the set 

of decision trees. Because each tree runs its own prediction, it is insulated from any 

other tree, reducing the likelihood of error.  

The third algorithm used is the Naïve Bayes algorithm [10]. The assumption is made 

in this scheme that the presence of a particular feature in a class is unrelated to the 

presence of any other feature. The classifier is based on Bayes’ theorem. (Bayes’ 

theorem gives the probability of an event based on conditions that may have caused 

said event). The algorithm works well on large datasets. Naive bayes was chosen 

because the dataset is larger, some attributes are nominal (text), and the problem has 

multiple classes – all of which fit well within the scope of the Naïve Bayes classification 

scheme.  

The fourth algorithm is the Bayesian network classifier [11]. As Mihaljevic, Bielza, 

and Larranaga [12] state that a Bayesian network classifier is simply a Bayesian 

network applied to classification, that is, the prediction of the probability ���|�� of 

some discrete (class) variable C given some features X. In other words, the Bayesian 

network classifier is a Bayesian network that is used when predicting a discrete class 

variable. It assigns predictor variables in a set to the most probable class. It utilizes a 

directed acyclic graph with each variable at a node encoding conditional 

independencies.  

The K* algorithm [13] is the fifth algorithm that was used on the dataset. Also 

referred to as the KNN (K-Nearest Neighbours algorithm), it is a simple machine 

learning, non-parametric supervised classifier. The classifier is based on the idea of 

similarity (proximity). It uses points on a graph to calculate its classifications. Worth 

noting here is that the K* algorithm used for this project relied on the entropy-based 

distance function.  

The final classifier used on the dataset was the Hoeffding tree (proposed by Hulten 

et al. [14]). An incremental anytime decision tree, the Hoeffding tree is used for large 

amounts of data. The tree grows incrementally based off the theoretical guaranteed 

Hoeffding bound. If sufficient statistical evidence exists, a decision at that point is made 

and the tree is split (hence the term optimal splitting). If the model and its training 
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instances is big enough, the Hoeffding tree becomes indistinguishable from non-

incremental learners. Hoeffding trees are advantageous due to the fact that they are 

highly accurate on small samples, incremental, and never scan the same data twice. 

4 Experiments and Analyses 

4.1. Dataset 

Having a good dataset is crucial to ensure the machine learning algorithm is trained 

as accurately as possible. In addition, a second requirement is that any piece of data in 

the dataset must be easily obtained through observation or cursory analysis. For 

example, while determining the grain size of a soil horizon would lead to an accurate 

classification, the tools needed to get a precise laboratory reading are expensive and 

complicated, rendering this as a metric that could be left out. However, the colour of a 

Pedon is something that is easily observable and would work well in determining at 

least a subset of potential soil classifications. The dataset itself consists of 142 lines of 

classes and attributes. The dataset was created exclusively for this project from data 

obtained in the official Canadian System for Soil Classification manual, 3rd Edition. 

The dataset contains 123 classes. Inspiration was gained from Michalski & Chilausky’s 

expert system database for soybean disease diagnosis [15]. 

Continuing the example above, while the general colour of a Pedon is helpful, it is 

not as helpful as grain size. Thus, other metrics need to be accumulated to differentiate 

soil classifications that are close in nature. For example, a soil labeled “brown” could 

be either a gray-brown Luvisol, or a Podzolic Folisol. In-depth analysis of the CSSC 

manual (3rd edition) revealed 12 attributes that could easily be observed or calculated 

using rudimentary instruments as listed in Table 1. The twelve attributes above allow 

each soil classification to be unique. While several classifications come close to one 

another, each does have at least one unique attribute which will allow the algorithm to 

classify the user’s data with a high degree of accuracy. As demonstrated later, the 

choice of these twelve resulted in a high accuracy rate during classification.   

Table 1: Dataset attributes 

Attributes Type Notes Expected Values 

Biome Nominal There are 8 biomes.  decidious-forest, 

coniferous-forest, hot-

desert, cold-desert, 

wetland, plains, pond, 

lacustrine 

Colour Nominal There are 12 possible colour 
combinations. The colour is defined as 

the general colour of the entire Pedon.  

none, gray, brown, dark-
brown, brown-orange, 

black, gray-brown, yellow, 

yellow-black, yellow-
brown, gray-black, red-

brown 

Predominant 
Horizon 

Nominal There are 13 options. The predominant 
horizon is defined as the thickness 

horizon in the Pedon. 

none, Om, O, Of, B, Ae, 
Bf, Ah, Bh, Bhf, Btg, Ah-

Ap, any 
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Special 

characteristic
s 

Nominal There are 9 special characteristics. none, fibric, cryoturbated, 

organic, gleyed, mineral, 
warm-soil, clay-enriched, 

slickenslide 

Soil forming 

process 

Nominal There are 7 soil forming processes. eluvial, alluvial, eolian, 

volcanic, glacial, climatic, 
biogenic 

Acidity Numeric 

(pH scale) 

Acidity uses the pH scale which runs 

from 0 (base) through 7 (neutral) to 14 
(acidity). Thus, decimal numbers 

between 0-14 are acceptable. 

0 – 14 

Moisture 

content 

Numeric Represents the water capacity in a soil 

by inches/foot in depth. Represented on 

a decimal scale from 0.25-2.50. 

0.00 – 2.50 

Consistency Nominal Consistency is defined as how smooth 

or rough the soil feels – this can be 

deducted simply by handling a sample. 

There are 4 values for this attribute.  

fine, semi-fine, semi-

coarse, coarse 

Porosity Numeric 

(percentage
) 

Porosity is the ratio of the volume of 

pores to the volume of bulk material. 
This is expressed as an integer 

representing a percentage.  

0 – 100 

Thickness Numeric 
(mm) 

The thickness in this context represents 
the thickness of the predominant 

horizon. It is represented in centemeters 

and is a decimal value. 

0 – 100 

Organic 

content 

Nominal Because organic soils are so widespread, 

this attribute was broken out of the 

special characteristics and soils can have 
more detail – soil can be not organic, 

organic, semidecomposed, or 

decomposed.    

no, yes-decomposed, yes-

semi-decomposed, yes 

Carbonate Nominal Carbonate soils have minerals that fizz 

in hydrocloric acid. This value may be 

true or false (inputted as yes/no)  

no, yes 

Information above only pertains to the attribute list. The training data not only lists 

the optimal values of each attribute, but also values that differ slightly from the optimal 

soil classification. For example, the organic order has the Mesisol, Humisol, and 

Fibrisol great groups. These are both dark, oxygen-rich, peat-like soils that can be easily 

misclassified by the user. To obtain an accurate classification, the machine learning 

algorithm must be given a subset of possible value for each classification.  Sample 

permutations arising from the Fibrisolic great group of the Organic order are shown 

below. Note that the attributes in green are the correct attributes for the Fibrisolic great 

group. The other permutations are possible values that the user could incorrectly enter. 

To correctly classify the great group, the dataset needs to ensure that a variety of 

potential cases are considered. These have been added to the dataset, extending the 

optimal set of eleven great group training sets to over seventy variations (eleven are the 

correct attribute lists, and the remainder are variations to the correct lists). Figure 3 

presents the scenario where the user can potentially misclassify the pedon they are 

observing. For the sake of brevity, the dataset was allowed to have, at most, three 

permutations per great group to constrain the dataset and thus prevent it from 

logarithmically increasing.  
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Figure 3: Possible permutations from the fibrisolic great group (partial tree) 

4.2. Results and Discussions 

Using WEKA, six algorithms were tested against the training data and compared to 

one another. Three tests were run on each classifier per algorithm, for a total of eighteen 

tests. The tests vary in scope, allowing for an accurate picture of how the algorithm will 

perform. In the first round of testing, the percentage split option was utilized and the 

training data was split into a test subset and training subset. In this round, 70% of the 

data was used as training data, and 30% used as test data. The second set of tests utilized 

k-fold cross-validation with � � 10. This method partitions the training dataset into k 

subsets. One subset is analyzed, and the results are validated on the other subsets 

(validation sets). To ensure maximum accuracy, tests were completed using � � 10 

rounds of cross-validation. The final round of tests involved using the training dataset 

as the test dataset. In this scenario, the classifier would use the training set to train itself, 

then use it again as a test data set. The accuracy percentage for these final tests should 

be quite high if the dataset is built well.  All the six algorithms were run utilizing the 

three testing methods outlined above and the results are shown in Table 2 in the form 

of weighted averages. 

Table 2: Test results using true positive, precision, and recall 

 True Positive Precision Recall 
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J48 C4.5 

Decision Tree 
62.16 78.86 91.05 0.607 0.819 0.966 0.622 0.797 0.935 

Random Forest 72.27 82.11 95.12 0.833 0.850 0.959 0.757 0.846 0.951 
Naive Bayes 78.38 74.79 93.49 0.890 0.729 0.961 0.784 0.764 0.927 
Bayesian 

Network 
62.16 79.67 95.12 0.813 0.799 0.975 0.622 0.780 0.951 

K* (KNN) 72.97 86.99 95.12 0.828 0.866 0.975 0.730 0.862 0.951 
Hoeffding Tree 86.48 85.37 95.12 0.924 0.855 0.975 0.865 0.854 0.951 



8 

A high TP-rate, high recall, and low standard error made the Hoeffding tree the 

algorithm of choice. While other algorithms (i.e., K*) performed better at certain tests, 

on the whole, the Hoeffding tree maintained stable results and high accuracy across all 

tests. The test results varied as shown above – however a cursory glance at the graph 

shows the Hoeffding tree beats the other decision trees by a fair margin and completely 

outperforms the Bayesian classifiers. 

5 Prototype Development of Soil Classification System  

5.1. Rationale for Choosing Hoeffding Tree Algorithm 

As we mention earlier, a simple prototype implementation of the soil classification 

system has been done based on the CSSC standard in this research study and can be 

downloaded from the following link: https://github.com/DakotaCS/CSSC-Application. 

Among the six algorithms compared, Hoeffding Tree algorithm has been choosen 

for the protype implemention based on our observations and the test results. The 

Hoeffding Tree algorithm is an incremental, anytime decision tree, utilizing a 

Hoeffding bound, that is useful when analyzing large amounts of data. In other words, 

the algorithm is made up of the Hoeffding tree algorithm (HTA) and Hoeffding bound 

(HB). To outline the rationale behind choosing the algorithm, a more in-depth 

explanation of the algorithm is required.  

The tree is built by initializing a root leaf (this leaf and all subsequent child leaves 

hold statistics of attribute values). The tree is grown through recursion – replacing 

leaves with decision nodes. A split check is initiated if a new sample is pushed down 

the tree and the values in the sample warrant a split after being heuristically evaluated 

through the information gain split or Gini split strategies. The pure very fast decision 

tree (VFDT) uses information gain as the splitting strategy, and this strategy was used 

here. The Hoeffding bound is used to choose a split attribute at a decision node. The 

induction phase of the tree splits the tree branches, checks tree nodes, and breaks ties. 

In this study, we emphirically set the Hoeffding tie threshold into 0.05.  

In the prediction phase, the Hoeffding tree may use the majority class, Naive Bayes, 

or Naïve Bayes adaptive strategy. Fong and Yang [16] argue that a Naive Bayes is 

better to maximize posterior probabilities given Bayes’ rule. For this project, the newer 

Naïve Bayes adaptive strategy was utilized. In this case, leaves store an estimation of 

the current error. The weight of each node in the voting process is proportional to the 

square of the inverse of the error [17].  

The rationale for choosing this algorithm utilizing the parameters discussed is two-

fold. First, the algorithm performed well on the various tests (see Section 4). Secondly, 

the algorithm’s Naive Bayes adaptive strategy allowed it to accurately apply Bayes’ 

theorem with strong independence. Tests utilizing the majority class strategy failed to 

achieve desirable results and hence the Naive Bayes adaptive was chosen.   

A final point worth noting is the reason behind why the algorithm worked better then 

the other algorithms on this dataset. Based on the research conducted, we put forward 

a few hypotheses directed individually at each competitor algorithm, demonstrating 
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why it was less accurate, and in this case, why the Hoeffding algorithm is more 

accurate.   

When it comes to the J48 algorithm, the Hoeffding bound allows for optimal splitting 

of the tree – the J48 algorithm does not utilize this method. Using the default WEKA 

J48 C4.5 algorithm, the info gain splitting mechanism is used (which is the same as the 

Hoeffding tree). However, the J48 algorithm does not combine any Naive Bayes 

prediction. This makes the J48 algorithm in this case more prone to over fitting. Another 

aspect worth considering here is that the zero values in the dataset will result in empty 

branches – artificially widening the tree [18].  

The Naive Bayes Adaptive leaf predictor in the Hoeffding tree avoids the sparse data 

problem. This issue plagues the Random Forest algorithm. The CSSC dataset presented 

in this project includes many instances that have attributes initialized at zero. Based on 

the tests, this issue is acute in the 70-30 split test. 

In terms of the Naive Bayes algorithm, it works well as a leaf predictor within the 

Hoeffding tree but is sub-optimal when run by itself. Some of the attributes in the CSSC 

dataset are not independent of one another, and some attributes are more important than 

others (i.e., the colour of a soil should be more indicative when predicting its soil great 

group then the attribute regarding the thickness of the predominant horizon). Despite 

these minor issues, the algorithm performed quite well. It’s biggest drawback is that it 

is naïve, and is generally not correct in real-world situations. As the intention was to 

construct a simple implementation of this project, the algorithm would not perform as 

well as the Hoeffding tree in real-world scenarios.  

The Bayesian network (Bayes Net) algorithm did poorly across all tests. This failure 

can be attribute to the fact that each variable in the dataset is not conditionally 

independent from its non-descendants, given its parents. The final test revealed this fact 

when the algorithm broke down and could not handle the scenario where thirty percent 

of the training data instances were used as test data in any meaningful way. The 

Hoeffding tree is not based on conditional independence – the backbone of the Bayesian 

network algorithm and naturally performed better.  

Finally, the Hoeffding tree in this case is more robust when handling large amounts 

of data, as well as outliers and missing values. The K* (KNN) algorithm handles neither 

well. In addition, it does not work well with high dimension data. While in this set, � <

 (where p is the total number of dimensions and N is the instances in the test data), 

compared to other WEKA datasets, the dimension is quite high. These issues 

(especially the latter) seemed to impact the K* algorithm’s performance. The Hoeffding 

algorithm itself is not perfect. However, based on the analysis above, it appears to be 

the one best suited for the task. 

5.2. Prototype Testing  

The dataset and algorithm were implemented as a Java application as part of this 

resarch study. The program is straightforward and directs the user to answer a series of 

questions. From this data, the algorithm is used to calculate the great group, and 

subsequence soil order using the attributes provided. Figure 4 shows the user interface 

of the implemented prototype. The protype utilizes the WEKA API (specifically the 
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weka.classifiers.trees.*). Training data via a database formatted in Attribute-Relation 

File Format (ARFF) is used to populate the Hoeffding tree. The test data consists of the 

user’s answers to the questions posed in the main GUI.  

There were a couple issues that were found in the prototype application. There 

appeared to be lower accuracy during classification in the prototype program versus the 

database testing that was done using the WEKA.  

 
Figure 4: User interface of the prototype 

The tests run in the prototype application used a subset of the soil classification 

database that had only base soil Pedon classes in the database. The reason behind this 

was to ensure the class permuations (see Figure 3 regarding how these permutations 

were derived from the base classes) were not unwittingly entered by the user (the 

chances of this happening were around seven percent). This would have created a 

successful result without utilizing the power of the Hoeffding algorithm. 

Secondly, some variables influenced the results more then others in ways that were 

unexpected. For example, if the acidity was set to seven, changing this to eight would 

produce a different result (with the condition no other variables were changed). 

However, changing the porosity from twenty-five percent to seventy-five percent 

(again assuming no other variables were changed) would not affect the result. Some 

test cases and the system generated results are shown in Table 3.  

Table 3: Some test scenario and the system generated results 

Test 

Cases 

User Submitted Values for the 

Attributes (see Table 1)   

System 

Generated 

Classification 

Results 

Intended 

Result 

Success/Fail 

1 Decidious-forest, gray, Ah, warm-soil, 

eluvial, 7, 50, fine, 1.25, 0, no, no 

Gray-brown Gray-brown Success 

2 Wetland, dark-brown, 0, no, biogenic, 
10.75, 50, coarse, 2, 30, yes, no 

Fibrisol Fibrisol Success 

3 Lacustrine, brown, Ah, clay-enriched, 

10.75, 50, fine, 2, 30, no, no 

Humic_3 Humic_3 Success 
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4 Plains, dark-brown, Ae, slickenslide, 

glacial, 10, 0.5, semi-coarse, 2.25, 30, 
no, yes 

Brown Solod Fail 

5 Plains, gray, Ae, slickenslide, glacial, 

10, 0.5, semi-coarse, 2.25, 0, no, yes 

Vertic Vertic Success 

6 Hot-desert, yellow, Ah, warm-soil, 
alluvial, 10, 50, fine, 1, 0, no, no 

Regosol Regosol Success 

7 Coniferous-forest, red-brown, Bh, 

organic, volvanic, 10, 50, coarse, 1, 30, 

yes, no 

Ferro-humic Ferro-humic Success 

8 Pond, gray, no, organic, biogenic, 7, 

50, coarse, 1, 30, yes-decomposed, no 

Humic_1 Gleyol Fail 

9 Cold-desert, yellow, any, cryotur, 

alluvial, 7, 20, semi-coarse, 1, 70, no, 

no 

Turbic Turbic Success 

10 Plains, black, Ah, no, eolian, 3, 10, 

coarse, 1, 40, yes, no 

Black Black Success 

6 Conclusion   

The classification of a soil has many benefits to both large and small businesses that 

span across many industries – from agriculture to resource extraction. For example, 

proper identification allows for more informed decision-making in regard to 

construction – what kinds of structures may be built, what urban density the land can 

sustain, how surface runoff will behave, etc. Unfortunately, the prohibitive price of 

equipment, and the specialized personnel needed to operate the equipment and software 

programs often leave companies with a large bill and on top of that a result that may 

not always be favourable. A limited number of expensive programs exist (such as 

GAEA’s WinSieve) but are not conducive for many businesses that would like a quick 

and accurate classification before expending more resources on further soil analysis 

depending on the initial result.  

The solution developed in this paper was multi-faceted. First, the properties of 

various soil types were utilized in order to classify the great groups of every soil in the 

CSSC. The resulting dataset was fed into six algorithms in order to determine which 

gave the most accurate result. The six algorithms used in the testing included the J48 

C4.5, Random Forest, Bayesian Net, Naïve Bayes, K* (KNN), and Hoeffding Tree 

algorithms. Every algorithm was tested three times using 10-fold cross validation, 70-

30 split, and training set – for a total of eighteen tests. The Hoeffding tree algorithm 

was the algorithm that appeared to perform best in terms of TP-value, precision, and 

recall. The Hoeffding tree algorithm was implemented into a prototype to demonstrate 

how a potential application that solves the problem might be realized. The algorithm 

was paired with the base data set as training data and user-entered data to output a result.   

The topic chosen for this paper is broad, and future research could be conducted on 

a few areas. For example, other algorithms could be tested, which could have the 

potential to increase the accuracy above and beyond the approximately eighty-percent 

threshold. In addition, the properties (attributes) chosen for classifying each soil could 

be refined and new attributes included. An interesting exercise here would be to 
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prescribe each attribute with a weight (i.e., acidity could be more heavily weighted then 

colour). This could produce more accurate results. Finally, in terms of implementation, 

the Java language makes it easy to transform the program into an Android® application 

that could be used on a mobile device – making it even more convenient to classify 

soils quickly and accurately under the Canadian soil classification scheme.  

References 
 

[1]  H. B. Stonehouse, The Canadian system of soil classification, Canada: Third Edition, Agriculture 
and Agri-Food Canada Publication, 1998.  

[2]  "N.A. (N.D.) Soil Horizons. NE Soil," [Online]. Available: 

http://nesoil.com/properties/horizons/sld001.htm. 

[3]  "Canadian society of soil science," Soils of Canada, 2020. [Online]. Available: soilsofcanada.ca. 

[4]  "GAEA," [Online]. Available: https://www.gaea.ca/proddetail.php?prod=3110. [Accessed 21 

January 2022]. 

[5]  P. Robertson, "Soil classification using the cone penetration test," Canadian Geotechnical Journal, 

vol. 27, no. 1, pp. 151-158, 1990.  

[6]  B. Bhattacharya and D. P. Solomatine, "Machine learning in soil classification," Neural Networks, 

vol. 19, no. 2, pp. 186-195, 2006.  

[7]  "Class J48," [Online]. Available: https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/J48.html. 

[Accessed 21 January 2022]. 

[8]  S. L. Salzberg , "C4.5: Programs for machine learning by J. Ross Quinlan," Machine Learning, vol. 

16, pp. 235-240, 1993.  

[9]  "Class RandomForest," [Online]. Available: 
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html. [Accessed 21 January 

2022]. 

[10] "Class NaiveBayes," [Online]. Available: 
https://weka.sourceforge.io/doc.dev/weka/classifiers/bayes/NaiveBayes.html. [Accessed 21 January 

2022]. 

[11] "Class BayesNet," [Online]. Available: 

https://weka.sourceforge.io/doc.dev/weka/classifiers/bayes/BayesNet.html. [Accessed 21 January 

2022]. 

[12] B. Mihaljevic, C. Bielza and P. Larranaga, "Learning Bayesian network classifiers," 2021. [Online]. 
Available: https://cran.r-project.org/web/packages/bnclassify/vignettes/overview.pdf. [Accessed 21 

January 2022]. 

[13] "Class KStar," [Online]. Available: 
https://weka.sourceforge.io/doc.dev/weka/classifiers/lazy/KStar.html. [Accessed 02 02 2022]. 

[14] G. Hulten, L. Spencer and P. Domingos, "Mining time-changing data streams," in ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 2021.  

[15] R. S. Michalski and R. L. Chilausky , "Learning by Being Told and," Learning by being told and 

learning from examples: an experimental comparison of the two methods of knowledge acquisition in 

the context of developing an expert system for soybean disease diagnosis, vol. 4, no. 2, 1980.  

[16] H. Yang and S. Fong, "OVFDT with functional tree leaf - majority class, naive Bayes and adaptive 

hybrid integrations," in International Conference on Data Mining and Intelligent Information 

Technology Applications, Macao, China, 2011.  

[17] "Classifiers," [Online]. Available: https://moa.cms.waikato.ac.nz/details/classification/classifiers-2/. 

[Accessed 02 02 2022]. 

[18] N. Saravanan and V. Gayathri, "Performance and classification evaluation of J48 algorithm and 
kendall’s based J48 algorithm," International Journal of Computer Trends and Technology, vol. 59, 

no. 2, pp. 73-80, 2017.  


