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Abstract

The cumbersome amount of textual data produced in social media and in the new dig-
ital life makes the usage of automatic decision systems necessary for acting on text. The
most widely adopted natural language processing approaches guarantee high accuracy
but are black-box systems, that hide the logic of their internal decision processes. Since
in various applications there is the need to unveil the reasons for the classification of dif-
ferent texts, the urge to explain black-box behaviour is growing among scientists. Thus,
we propose a local model-agnostic method for interpreting text classifiers. Our method
explains the decision of a text classifier on a given document by generating similar sam-
ples in its vicinity. The new samples are generated by replacing words of the document
under analysis with their synonyms, antonyms, hyponyms, hypernyms, and definitions.
Finally, these synthetic texts are used to train a decision tree that enables the user to
identify important words explaining the classification outcome. An inspection of the syn-
thetic documents generated by our proposal together with a set of words appropriately
highlighted explain why the black box assigns a certain label to a given document. Deep
and wide experimentation on various datasets and classifiers shows the effectiveness of
our proposal and that its performance overcomes state-of-the-art methods.
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1. Introduction

Textual data is one of the most widely widespread data type. Indeed, as humans, we use
natural language translated into text to communicate, store information, express opinions
etc. The novel interconnected society produces ton of terabyte of textual data every day.
This enormous amount of information needs to be managed through automatic decision
systems. Automatic text classification has been widely adopted for sentiment classification,
fake news detection, spam alert, etc. To handle these non-trivial goals, many complex ma-
chine learning systems have been designed, ranging from language models [1–3], to machine
translation [4], and text generation [3].These systems have achieved outstanding performance
thanks to deep learning approaches designed for Natural Language Processing (NLP). The
weakness of these approaches is that they are indeed a mystery for the users due to to
their difficult comprehensive internal structure, as well as to their sheer size, they are often
referred to as “black box” models [5]. Besides, the widespread adoption of machine learning
algorithms has increased the necessity of trust these models in order to employ them for
critical decision-making scenarios [6]. Despite the considerable interest in explainable meth-
ods in visual and tabular domain, a limited research has been conducted in textual field [7].
As a consequence, in this paper, we propose DICTA, a modularizeD model-agnostic frame-
work for the explanatIon of black box Classifiers for Text dAta. A novelty aspect of DICTA
with respect to the interpretability literature is that it draws on robust and generally used
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NLP tools to explain classifiers working on texts in natural language. Given a black box
classifier, a text document under analysis, and the decision of the classifier on the document,
DICTA returns an explanation of the classification in terms of words on the document un-
der analysis highlighted depending on their importance, which is measured as responsibility
for the classification outcome. In contrast to state-of-the-art textual explainers, DICTA
exploits the notion of influential sentences to audit the black box classifier and to extract
the explanation. With influential sentence we refer to a sentence that has a high impact
on the classification outcome of a document. DICTA exploits such sentences to generate
a set of similar documents by exploiting WordNet [8]. In particular, DICTA randomly re-
places words of influential sentences by their semantic replacement which is the collection of
synonyms, antonyms, hyponyms, hypernyms, and definitions. Thus, DICTA preserves the
structure of the original text as it generates synthetic text samples through the WordNet
ontology. DICTA explores the behavior of black box model by training a decision tree on
a simplified representation of the synthetic texts. The tree is exploited for highlighting the
words more responsible for the class label of a document. The main advantages of DICTA
are (i) fast, simple and easily customizable neighborhood generation, (ii) simple and un-
derstandable factual and counterfactual explanations [9, 10], (iii) and modular design. We
conducted experiments on four sentiment analysis benchmark datasets (IMDB, Amazon,
Yelp, and U.S. Airline Tweets) and four text classifiers to assess different desiderata for
model-agnostic explainers, namely explanation trustfulness, synthetic neighborhood com-
pactness, plausibility, and sentimental agreement. Moreover, we developed an evaluation
method for comparing the degree of agreement between the salient scores sentences extracted
by the explanation algorithms and their sentimental polarity obtained from a sentiment lex-
icon. The goal was to facilitate (i) comparing DICTA with other explanation methods that
do not locally explore the behavior of black box model, and (ii) measuring how much the
estimated salient scores are similar to the actual sentiment of words. The rest of the paper
is organized as follows. Section 2 discusses related works. Section 3 illustrates the proposed
method. Section 4 presents the experimental results. Finally, Section 5 concludes the paper
discussing known limitations.

2. Related works

The extensive application of deep and complex machine learning models on different do-
mains [11] increases the need to understand the decisions taken by the systems and adopting
these models in order to employ them for critical decision-making. This resulted in a growing
research on the explainability methods for complex and obscure models. From a top-level
perspective, they are categorized as model-specific versus model-agnostic. The two most
well-known local model-agnostic explainers that can also be applied to text are LIME [12]
and SHAP [13]. LIME randomly generates synthetic neighborhood texts and trains a linear
model on such instances as an interpretable local surrogate.The problem of using LIME with
text is that the text neighborhood are generated by randomly removing words, possibly gen-
erating meaningless sentences [14]. SHAP is another model agnostic approach that takes
advantage of the Shapely value estimation [15] and tests different combinations of words
to understand their importance in the decision outcome which randomly removes words
from the text under analysis. Therefore, in both cases, the black box is audited with texts
that can be implausible, meaningless, or adversarial as they could be potential outliers with
respect to the original training set of the machine learning model. DICTA departs from
these weaknesses by exploiting an ad-hoc neighborhood generation guaranteeing the cre-
ation of realistic sentences by design. X-SPELLS [lampridis2020explaining] overcomes
the limitation of LIME and SHAP through the usage of a Variational Auto-Encoder for
the neighborhood generation of texts that similar to [9], is moved into a latent space. This
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Figure 1. (a) Overview of DICTA framework. DICTA takes as input a textual docu-
ment (step 1), classifies it with a black box and extracts the most influential sentences
impacting more on the probability label (step 2). It matches words in the influential
sentences with a possible semantic replacement using an ontology (e.g., WordNet) and
generates a synthetic dataset (steps 3–5). Finally, it trains a local decision tree on the
synthetic neighborhood, exploits the tree to retrieve the importance of the words used
for classification, and returns them to the final user (steps 6–7). (b) Explanations of a
document labeled as “Positive" by a Bidirectional-GRU on Airlines tweets dataset with
DICTA, LIME and SHAP. Positive and negative impacts are highlighted with green and
red shades respectively.

strategy seems more easily usable on continuous visual domains; however, for text data,
the small perturbation in the feature space can drastically change the meaning of a given
example and result in inaccurate examples [16]. Additionally modern text pocessing tech-
niques require billions of hyperparameters, e.g., BERT [1], therefore using another complex
language model to explain the behavior of a black box can bring an unnecessary additional
source of complexity for the user. Moreover, DICTA does not assume any constraints on
the length of documents or their problem domain as opposed to [17, 18]. LioNets [19] and
exBERT [20] are model-specific explainers specifically designed for text classifiers that try
to locally estimate the behavior of a deep neural network by generating a neighborhood at
the penultimate layer of the network. These approaches rely on the choice of a reference ex-
ample that strongly depends on the problem’s domain. DICTA overcomes the limitation of
these approaches by being a model-agnostic explainer and not requiring a reference sample
but only an ontology.

3. DICTA

This section presents DICTA, a modularizeD model-agnostic framework for the expla-
natIon of black box Classifiers for Text dAta. Let d = ⟨S1, . . . , Sn⟩ be a document repre-
sented as a sequence of sentences Si = ⟨w1, . . . , wm⟩, with 1 ≤ i ≤ n and where any wj with
1 ≤ j ≤ m) is a word. Explaining the decision of a black box model f on a given document d,
i.e., f(d) = y, means presenting an explanation e, that belongs to a human-understandable
domain E. The proposed explanation method is the next step in the line of research on
local model-agnostic methods originated from [9, 12, 21]. Thus, the idea of DICTA is to
unveil the reason for classification of a trained text classifier by studying its behavior on the
synthetic neighborhood of a given document. In other words, DICTA locally estimates, for
every classified document d, the decision boundary of a complex decision function f . More
specifically, the explanation e produced by DICTA locally approximates the decision bound-
ary of f around d by highlighting the words more responsible for the decision f(d) = y by
exploiting the idea of semantic replacement. Thus, d syntax remains relatively unchanged
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Algorithm 1: DICTA(d, f , R, T )
Input : d - document to explain, f - black box function, k - nbr. influential

sentences, T - words ontology, n - neighborhood size
Output: e - explanation

1 yp ← fp(d); // get probability of prediction

2 A← ∅; // init. infl. sent. scores

3 for Si ∈ d do
4 d′ ← remove(Si, d); // remove sentence

5 Ai ← |yp − fp(d
′)|; // store cand score.

6 I ← select(Sc, k); // get indexes top k sentences

7 S ← {Si|i ∈ I}; // select top k sentences

8 R ← ∅; // init. semantic replacement

9 for Si ∈ S do
10 for wj ∈ Si do
11 Rwj

← repl(wj , T ); // semantic replacement

12 N ← ∅; // init. neighborhood

13 for i ∈ [1, n] do
14 d′ ← copy(d); // copy the document

15 Si ← rndSelection(S); // select sentence

16 W ← rndSelection(Si); // select words

17 for wj ∈W do
18 d′ ← repalce(wj ,Rwj

,Si , d
′); // replace word j in sentence i

19 N ← N ∪ {d′}; // add to neighborhood

20 Y ← f(N); // classify neighborhood

21 dt ← train(N,Y ); // train decision tree

22 e← extractExpl(dt , f(d)); // get explanation

23 return e;

while its semantic is modified. The main idea of DICTA (shown in Figure 1(a) and explained
in Algorithm 1) is to study how the semantic replacement of specific words affects the clas-
sification. DICTA does not operate on all the words of a document but only on the words
belonging to influential sentences. Influential sentences are those with the highest impact
on document classification. The three main steps of DICTA for explaining the behavior of
black box model are: (i) identification of influential sentences, (ii) neighborhood generation
through semantic replacement, (iii) local interpretable surrogate training and explanation
extraction.

3.1. Influential Sentences Extraction

A key component of DICTA is the identification of influential sentences with high impact
on the class label of the document. Thus, influential sentences contain the more discrimina-
tive words that are essential for distinguishing the document’s class label. DICTA identifies
influential sentences as follows (lines 1–7 in Alg. 1, steps 1–2 in Fig. 1(a)). First of all,
DICTA queries the black box f and stores the probability for obtaining the label y = f(d)
for the document under analysis d (yp = fp(d) in Alg. 1 (line 1)). Then, for each sentence
Si ∈ d (lines 3–5), DICTA creates a synthetic document d′ as a copy of d but without
the sentence Si (line4), and it stores in the influential sentences score candidate set A the
absolute deviation between yp and f(d′). Finally, it identifies the indexes of the k sentences
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with the most significant influence and stores them in the set S. k is one of the data-
dependent hyper-parameters depending on the average/maximum number of sentences in
the dataset. After this step, the influential sentences S and the document d are passed to
the neighborhood generator process (step 3 in Fig. 1(a)).

3.2. Neighborhood Generator

The neighborhood generator process is responsible for creating synthetic documents Z
similar to d on which the black box function has to be queried to understand the reasons
for the label y = f(d). It starts with the identification of the set of words R to be used
for the semantic replacement (lines 8–11 in Alg. 1, steps 4–5 in Fig. 1(a)). Thus, for each
influential sentence in Si ∈ S and for each word wj ∈ Si, DICTA identifies the set of words
to be used as a semantic replacement of wj as Rwj with respect to a given ontology T
such that, in case of substitution with wj , the meaning of the sentence remains the same
(line 11). Given the number n of neighbors to generate, DICTA creates a copy d′ of the
document under analysis d (line 14). It randomly selects an influential sentence Si (line 15)
and from Si, it randomly chooses a set of words W (line 16). Then, it replaces the selected
words W with random words from their semantic replacementsRwj (lines 17–18).Finally, the
synthetic document created by DICTA through this procedure is stored in the neighborhood
N . After that, DICTA audits the black box function through the synthetic neighborhood to
do the classification Y = f(N) (line 20). In our implementation, as ontology T , we adopted
WordNet [8], a robust lexical database to find the semantic replacements of the words.
WordNet’s use is essential, as it preserves the distribution of the given document features,
and the synthetic sentences are semantically similar to the original one, according to the
distributed semantic principle that states that “a word is characterized by the company
it keeps” [22]. The use of WordNet has two advantages: (i) transparency : the relations
between the lexical categories are intuitive and understandable to all users regardless of
their linguistic knowledge; (ii) accessibility : WordNet is freely available in more than 200
languages and has connectors to many programming languages/systems without any fine-
tuning. WordNet used as the primary resource for neighborhood generation, makes the
design of our method more attractive for its usage in limited computing conditions, while
sophisticated complex language models like BERT impose a heavy computational overhead
on the interpretability task.

3.3. Local Decision Tree & Explanation

After the neighborhood generation, the neighborhood N and the corresponding labels Y
are employed to train an interpretable local surrogate model (line 22 in Alg. 1, step 6 in
Fig. 1(a)) by training an interpretable decision tree dt (line 22) on N and Y . We adopt a
decision tree to explain the black box’s local behavior due to its simplicity and comprehen-
sibility for non-expert users [23]. The decision tree is finally used for extracting the most
important words responsible for the classification that composes the output explanation e
(lines 23–24 in Alg. 1, step 7 in Fig. 1(a)). Thus, given the document d, DICTA extracts
the words’ importance by tracing the conditions triggered by d on the path from the root
node to leaves on dt . The importance of words is obtained as the normalized total reduction
of the Gini criterion in the decision tree dt brought by each word Gini importance [24].
The quantification of the importance of the words enables the building of a sort of “saliency
map” that highlights the important word wj in d with their corresponding score. Besides
the words’ importance, we chose the decision tree as an interpretable surrogate model be-
cause its graphical representation allows a user to visually and comprehensively trace the
decision of a black box. Also, the words in the tree appear structured in a top-down format
that shows close to the root the most important ones [25]. An example of explanation e
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Table 1. Datasets description (left), accuracy (right).

#docs #categ Avg
#w

Max
#w

Avg
#S

Max
#S

#infl.
sent. BiLSTM BiGRU CNN1d RF

Yelp 700k 5 9 438 8 150 5 0.60 0.61 0.56 0.52
Amazon 278k 5 8 169 4 122 3 0.66 0.67 0.65 0.60
Airline
Tweets 14k 3 7 20 2 9 2 0.78 0.77 0.76 0.70

IMDB 50k 2 13 384 10 117 6 0.86 0.86 0.85 0.79

returned by DICTA is presented in Figure 1(b). Here the relevant words for the positive
class are colored in green, and the ones for the negative class are colored in red. The color
intensity of the highlighted words measures the importance with respect to a specific class.
The advantage of using semantic replacement is that the original structure of a document
is preserved and it is easy to observe the importance of other words replaced with the high-
lighted ones among those in the synthetic neighborhood. On the other hand, the random
elimination of words for neighborhood generation like the one performed by LIME or SHAP
(Figure 1(b)) may result in too short documents that do not have the same structure and
meaning with the original document. In addition, with a random elimination, a group of
words may get frequently removed from the document, and their real effect may not be
adequately recognized. DICTA overcomes this possibility by understanding the effect of
each word by replacing it with words having the same meaning or the opposite one. Indeed,
in cases in which a word is very influential for labeling a document, replacing it with a word
with the opposite meaning will provide a potent effect on the probability of the class label.
The comparison shows that DICTA focuses on the most important words and has a richer
explanation because it attaches the set of words derived by the WordNet and highlights
their impact on the text classification.

4. Experiments

In this section, we show the effectiveness of DICTA through a quantitative and qualitative
evaluation1. First, we illustrate the experimental setting. After that, we show a quantitative
evaluation on different metrics comparing DICTA with state-of-the-art local model-agnostic
explainers on different datasets and text classifiers. Finally, we report a qualitative evalua-
tion practically illustrating the benefits and the readability of the explanations returned by
DICTA.

4.1. Experimental Setting

We experimented on four textual dataset typically used to train classifiers able to detect
the sentiment of the documents: (i) IMDB movies reviews [26] that contains highly polar-
ized opinions reviews on movies, (ii) Yelp [27] data that includes the businesses’ reviews,
(iii) Amazon [28] dataset of product reviews, and (iv) anonymous Tweets related to U.S
airlines [29]. The number of instances, number of categories, the average/maximum num-
ber of words and sentences in the dataset are shown in Table 1 (left). We split the data
into training (80%), testing (10%), and validation (10%). We report in Table 1 also the
number of informative sentences adopted by DICTA as it varies from dataset to dataset.
We experimented with DICTA by explaining four text classifiers, i.e., CNN1D, BiGRU, and
BiLSTM based on deep learning and a Random Forest (RF) classifier. The structure of text

1Python code and datasets at: https://github.com/MahtabSarvmaili/DICTA.git. Experiments were run
on Ubuntu 20.04.1 LTS, Intel® Core™ i7 CPU, 16 GB DIMM DDR4 RAM.

https://github.com/MahtabSarvmaili/DICTA.git
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Figure 2. (a) A local surrogate tree explaining CNN1D for a Yelp review. Due to the
space limitation, some parts of the original tree are not shown. (b) Decision rules ex-
tracted from the tree. The first row of the table shows the document under analysis
and its label (five-star review), and the callouts at the top of each word present words
from the semantic set (green for synonyms, RED for antonyms, and blue for hyponyms
and hypernyms) that was replaced with the word . The second to fourth row are the
decision rules extracted from the decision tree and the final labels that are assigned to
these rules. The antecedent of rules are in the left column, and their consequents are in
the right column.

classifiers is as follows:(i) BiLSTM uses one embedding layer that is initiated with the pre-
trained vectors, two layers of bidirectional LSTM, which is followed by a Dense layer and a
softmax over the class labels. (ii) BiGRU has the same architecture, but instead of LSTM,
it uses the Bidirectional GRU. CNN1D follows the architecture of [30]. We trained deep
learning based models with the following parameter setting: batch size 200, word embed-
ding dimension 200, the maximum number of unique tokens 200k, and 10 training epochs.
Finally, we used RF with 150 trees. The accuracy of the various classifiers is reported in
Table 1 (right). We measured the goodness of the explanations returned by DICTA in terms
of the following indicators. First, correctness of the words importance scores with respect to
the sentiment scores assigned by the sentiment lexicon VADER [31]. Second, the fidelity of
the local surrogate model with respect to the black box classifier.Third, the plausibility and
similarity of the neighborhood measured in terms of outliers present in the generated data
and similarity between real data and synthetic neighborhoods.Details on every indicator
are given in the corresponding section. We compared with the state-of-the-art explanation
methods LIME [12] and SHAP [13]. In particular, due to the high degree of structural sim-
ilarity between DICTA and LIME, we could perform comparisons among them for all the
aforementioned measures.On the other hand, since SHAP does not train a local surrogate
and does not generate a neighborhood, we limit the evaluation of DICTA and SHAP on the
first measure. If not differently specified for DICTA, we adopted the following parameter
setting as a result of a preliminary experimentation not reported here due to lack of space.
The number of influential sentences selected for each dataset is reported in Table 1. Then,
we generated neighborhoods composed by n = 100 synthetic documents.

4.2. Salient Scores and Sentimental Polarity Agreement

Inspired by [32], we report an experiment where we compare the salient scores of words
with their sentimental polarity extracted from a sentiment lexicon resource. We designed this
experiment to observe the impact of words on the prediction of black box model regardless
of the class label. We binarized the class labels of the datasets by using the middle class as
a threshold to assign the two labels. For example, in the Yelp dataset, we have 1-5 stars
ratings for businesses. From 1-3 we assigned the class as a "negative" review and 4-5 as a
positive review. The same procedure was used for Amazon, and the scales 1-2 as negative
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Table 2. Agreement between the sentimental polarity extracted from explainers and
VADER sentimental lexicon.

Yelp Amazon Airline Tweets IMDB

BiGRU
DICTA 0.57 0.65 0.59 0.48
LIME 0.43 0.48 0.43 0.52
SHAP 0.47 0.50 0.47 0.84

BiLSTM
DICTA 0.56 0.66 0.61 0.48
LIME 0.46 0.47 0.41 0.53
SHAP 0.47 0.46 0.49 0.85

CNN1D
DICTA 0.57 0.65 0.59 0.48
LIME 0.46 0.43 0.37 0.52
SHAP 0.47 0.51 0.41 0.84

and 3 as positive were used for U.S. Airline tweets. We have also binarized the importance
scores of LIME and SHAP by taking the negative scores as a negative contribution towards
a label value and the positive scores as a positive contribution towards a label value. Thus,
for validation purposes, we extracted the sentiment scores of words from the sentiment
lexicon VADER [31] and we binarized them to the positive and negative classes. On the
other hand, for DICTA, we obtained the polarity of words at each node of the decision tree
by examining the normalized ratio of the number of samples that fall into each class. If
the class label is considered “positive”, we assigned the positive annotation to the words;
otherwise, we label them as “negative”. Finally, we measured the percentage of agreement,
i.e., the higher the better, between the classes provided by LIME, SHAP, and DICTA and
the sentiment suggested by VADER. The results are shown in Table 2 clearly reveals that
DICTA outperforms LIME and SHAP on three datasets out of four (Yelp, Amazon, and
Airline Tweets). However, for IMDB dataset SHAP is the best performer, requiring a
deeper investigation to understand the reasons for this result. We highlight that we gained
a significant understanding of word scores when carefully exploring the word importance
extracted from the decision tree. Indeed, the decision tree structure allows exploring better
the connection between the input document and the lexicon composing it. In cases where
the label assigned by the black box to a document is negative, the document usually contains
strong negative words that commonly reside in the top nodes of the decision tree. When we
trace down the tree from the root to the leaves to obtain the polarity of words, most of the
neutral or positive words (that can flip the class of a document) reside in the intermediate
levels or close to the leaves. Although these words reduce the number of negative instances
at their level, most instances may belong to the negative class, causing the positive words
assigned a negative sentiment. Hence, we highlight that traversing the tree empowers final
users to understand the relation between the words and their impact on the sentiment label
of a document.

4.3. Qualitative Evaluation of Decision Rules

We linearized the decision tree into an understandable rule form that provides a more
flexible semantics for representing the classifier [33]. Rules can be extracted from the decision
tree by tracing down a decision path from the root node to the leaf. An example of the
trained decision tree and traversing it for an instance of Yelp reviews is given in Figure 2.
Since we are using the TF-IDF vectors for training the decision tree, the real value that
each feature is compared to translates to the importance of that word in the neighborhood
text set. We start from the root node then we follow paths to get to the leaves. By tracing
down the decision tree and following the ensuing rules, we look at the words in the order of
their importance for the decision in the leaf of the tree. The salient words are served to the
user in the order of their importance for the decision in the leaf of the tree (in consequent of
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Figure 3. Fidelity (accuracy) of DICTA and LIME on datasets

Table 3. The p−values of Wilcoxon test showing the statistical significance of the im-
provement of DICTA’s performance over LIME for the fidelity.

IMDB Amazon Yelp Airline
tweets

BiLSTM 5.33× e−29 3.88× e−08 1.15× e−28 1.44× e−11

BiGRU 1.91× e−31 2.48× e−09 3.13× e−29 3.61× e−05

CNN1D 1.88× e−41 3.66× e−28 2.91× e−28 1.79× e−15

RF 1.11× e−41 4.23× e−11 9.82× e−43 6.56× e−20

a decision rule). As has been shown in the classical cognitive science literature investigating
explainability of decision rules [34] understanding decision rules in this manner, which is
suggestive of causality, is a better explanation of the rules (and therefore a better explanation
of the model) than one consisting of an unordered set or salient words. Referring to Figure 2
(b) the user may find an explanation starting with unfriendly and hostile staff sufficient cause
to understand why a restaurant is not recommended, rather than an explanation starting
with the set or quality.

4.4. Fidelity Evaluation

We compared DICTA against LIME on text classification, measuring the fidelity [35, 36]
of the interpretable surrogate model with respect to the black box model. The fidelity of an
interpretable model indicates its faithfulness in imitating the behavior of the black box in
the neighborhood of a particular data point.This is important because the meaningfulness
of an explanation should be at least locally faithful. The fidelity can be measured as the
accuracy of the prediction of the local surrogate model c on the neighborhood Nd generated
for document d with respect to the prediction of the black box on the same set, i.e., we
aim at comparing yc = c(Nd) with yf = f(Nd). As an evaluation measure, we rely on the
accuracy between yc and yf . In particular, for DICTA c is the local decision tree, while
for LIME, c is the local regressor. We calculated the fidelity by sampling uniformly at
random 300 instances from the test data. We measured the accuracy of DICTA and LIME
in mimicking the behavior of black box decisions for their neighborhood. We report the
comparison of DICTA and LIME fidelity in the box-plots in Figure 3. The results show
that DICTA outperforms LIME on all datasets and all text classifiers in imitating the black
box behavior. We also evaluated the statistical significance of the improvement of DICTA’s
performance over LIME. To this end, we employed the Wilcoxon test to analyze the fidelity
of these models. We report the p-values for all datasets and black boxes in Table 3. Very low
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p-values indicate that the differences between DICTA and LIME performance are significant;
therefore, results in Table 3 prove a statistical evidence of DICTA’s superior fidelity.

4.5. Synthetic Neighborhoods Evaluation

Yelp Amazon Airline
Twitter IMDB

C L C L C L C L

BiLSTM DICTA 0.25 1.54 0.28 1.33 0.24 7.25×1e3 0.17 1.35
LIME 0.27 1.57 0.24 1.31 0.30 1.0 0.21 1.96

BiGRU DICTA 0.26 1.24 0.28 1.91 0.23 1.41 0.19 1.76
LIME 0.29 1.25 0.27 1.62 0.29 1.0 0.24 3.41

CNN1D DICTA 0.28 1.51 0.22 1.5 0.16 1.07 0.14 1.57
LIME 0.33 1.29 0.25 2.37×1e4 0.28 1.13×1e7 0.20 1.40

RF DICTA 0.34 1.20 0.45 2.45×1e7 0.38 1.32 0.23 1.68
LIME 0.33 1.46 0.32 1.69 0.32 3.47 0.32 1.72

Table 4. The average cosine distance (C), and LOF (L) between the original document
and neighborhood data of DICTA and LIME.

In this section we discuss the evaluation results on the quality of synthetic textual data
generated as local neighborhoods. We quantitatively evaluated the density and cohesion [37]
of neighborhood data to prove that DICTA produces diverse, plausible and high quality
neighborhood text data in comparison to LIME. To this end, we adopted two approaches:
(i) measuring the average cosine distance between the original document d and neighbor-
hood Nd, that provides an evidence about the similarity of the neighborhood (cohesion),
and (ii) measuring the Local Outlier Factor (LOF) [38], that captures the level of neighbor-
hood density providing insights on its plausibility and diversity degree. The average cosine
distance value (C columns) between the original document and the synthetic documents in
the neighborhood shows the degree of similarity between them. The results in Table 4 show
that the average cosine distance to DICTA’s neighborhood is lower than LIME’s neighbor-
hood, especially for deep text classifiers. In LOF, which is an anomaly detection approach,
the local density of the data is compared against its neighbors’ local densities to identify
similar density regions LOF. It uses the k-Nearest Neighborhood to recognize these regions.
The points with a considerably lower density to their neighbors are considered outliers. We
employed LOF to evaluate the neighborhood compactness and density with respect to a
reference population given by the original dataset. Table 4 reports the average LOF (L
columns) for DICTA and LIME on the four datasets. We observe that DICTA has simi-
lar or higher LOF values for most of the datasets compared to LIME, which means that
the DICTA neighborhood generation, based on the WordNet, leads to exploring at least a
similar or wider area of the neighborhood around the given document. If we consider both
cosine distance and LOF (Table 4) values of the generated data, we can infer that although
DICTA neighborhood has a higher diversity in terms of the number of different words, the
generated text remains semantically similar to the original document.

5. Conclusions

We have presented DICTA, a model-agnostic explainer for black box text classifiers.
DICTA explains a black box model’s behavior by evaluating the impact of words and their
semantic replacement on the class distribution of a document. In this way, each word’s
value is made explicit, and replacing it with its semantic replacement allows to check how
it is possible to positively or negatively change the class label of a given document. Hence,
the explanations provided by DICTA are more expressive and understandable than the ones
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provided by LIME and SHAP, which are based on features’ importance. The evaluation
of the synthetic neighborhoods indicates that DICTA preserves the essence of the original
document and enriches it with semantically similar sentences. This feature of DICTA is
essential for short documents because eliminating words like LIME or SHAP, rather than
replacing it as we do, can drastically change the structure of the documents analyzed. Future
work aims to study the neighborhood generation and its advantages in explaining modern
text classifiers such as Transformer.

References

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep bidirectional
transformers for language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. “Language models are
unsupervised multitask learners”. In: OpenAI blog 1.8 (2019), p. 9.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. “Language models are few-shot learners”. In: arXiv
preprint arXiv:2005.14165 (2020).

[4] J. Zhu, Y. Xia, L. Wu, D. He, T. Qin, W. Zhou, H. Li, and T.-Y. Liu. “Incorporating bert
into neural machine translation”. In: arXiv preprint arXiv:2002.06823 (2020).

[5] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. “A survey of
methods for explaining black box models”. In: ACM computing surveys (CSUR) 51.5 (2018),
pp. 1–42.

[6] T. Miller. “Explanation in artificial intelligence: Insights from the social sciences”. In: Artificial
Intelligence 267 (2019), pp. 1–38.

[7] F. Bodria, F. Giannotti, R. Guidotti, F. Naretto, D. Pedreschi, and S. Rinzivillo. “Benchmark-
ing and Survey of Explanation Methods for Black Box Models”. In: CoRR abs/2102.13076
(2021).

[8] G. A. Miller. WordNet: An electronic lexical database. MIT press, 1998.
[9] R. Guidotti, A. Monreale, S. Matwin, and D. Pedreschi. “Black Box Explanation by Learning

Image Exemplars in the Latent Feature Space”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer. 2019, pp. 189–205.

[10] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, and F. Turini. “Factual
and counterfactual explanations for black box decision making”. In: IEEE Intelligent Systems
34.6 (2019), pp. 14–23.

[11] M. Ahmed and A. N. Islam. “Deep learning: hope or hype”. In: Annals of Data Science (2020),
pp. 1–6.

[12] M. T. Ribeiro, S. Singh, and C. Guestrin. “" Why should i trust you?" Explaining the predic-
tions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining. 2016, pp. 1135–1144.

[13] S. M. Lundberg and S.-I. Lee. “A unified approach to interpreting model predictions”. In:
Advances in neural information processing systems. 2017, pp. 4765–4774.

[14] R Guidotti, A Monreale, and L Cariaggi. “Investigating neighborhood generation for expla-
nations of image classifiers”. In: PAKDD. 2019.

[15] S. Lipovetsky and M. Conklin. “Analysis of regression in game theory approach”. In: Applied
Stochastic Models in Business and Industry 17.4 (2001), pp. 319–330.

[16] J. Li, S. Ji, T. Du, B. Li, and T. Wang. “Textbugger: Generating adversarial text against
real-world applications”. In: arXiv preprint arXiv:1812.05271 (2018).

[17] H. Liu, Q. Yin, and W. Y. Wang. “Towards Explainable NLP: A Generative Explanation
Framework for Text Classification”. In: Proceedings of the 57th Conference of the Associ-
ation for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers. Ed. by A. Korhonen, D. R. Traum, and L. Màrquez. Association
for Computational Linguistics, 2019, pp. 5570–5581. doi: 10.18653/v1/p19- 1560. url:
https://doi.org/10.18653/v1/p19-1560.

[18] S. Ouyang, A. Lawlor, F. Costa, and P. Dolog. “Improving explainable recommendations with
synthetic reviews”. In: arXiv preprint arXiv:1807.06978 (2018).

https://doi.org/10.18653/v1/p19-1560
https://doi.org/10.18653/v1/p19-1560


12

[19] I. Mollas, N. Bassiliades, and G. Tsoumakas. “LioNets: local interpretation of neural networks
through penultimate layer decoding”. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer. 2019, pp. 265–276.

[20] B. Hoover, H. Strobelt, and S. Gehrmann. “exbert: A visual analysis tool to explore learned
representations in transformers models”. In: arXiv preprint arXiv:1910.05276 (2019).

[21] M. Sarvmaili, A. Soares, R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, and S.
Matwin. “A modularized framework for explaining hierarchical attention networks on text
classifiers”. In: Proceedings of the Canadian Conference on Artificial Intelligence (June 8,
2021). https://caiac.pubpub.org/pub/zzjy8kzu. doi: 10.21428/594757db.23db72bf. url:
https://caiac.pubpub.org/pub/zzjy8kzu.

[22] J. R. Firth. Selected papers of JR Firth, 1952-59. Indiana University Press, 1968.
[23] M. Wu, S. Parbhoo, M. C. Hughes, V. Roth, and F. Doshi-Velez. “Optimizing for Interpretabil-

ity in Deep Neural Networks with Tree Regularization”. In: arXiv preprint arXiv:1908.05254
(2019).

[24] L. Breiman. “Random Forests”. In: Mach. Learn. 45.1 (2001), pp. 5–32.
[25] R. Elshawi, M. H. Al-Mallah, and S. Sakr. “On the interpretability of machine learning-based

model for predicting hypertension”. In: BMC medical informatics and decision making 19.1
(2019), pp. 1–32.

[26] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. “Learning Word
Vectors for Sentiment Analysis”. In: Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA:
Association for Computational Linguistics, 2011, pp. 142–150. url: http://www.aclweb.
org/anthology/P11-1015.

[27] D. Tang, B. Qin, and T. Liu. “Document modeling with gated recurrent neural network
for sentiment classification”. In: Proceedings of the 2015 conference on empirical methods in
natural language processing. 2015, pp. 1422–1432.

[28] R. He and J. McAuley. “Ups and downs: Modeling the visual evolution of fashion trends with
one-class collaborative filtering”. In: proceedings of the 25th international conference on world
wide web. 2016, pp. 507–517.

[29] A. Rane and A. Kumar. “Sentiment Classification System of Twitter Data for US Airline Ser-
vice Analysis”. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC). Vol. 01. 2018, pp. 769–773. doi: 10.1109/COMPSAC.2018.00114.

[30] Y. Kim. “Convolutional neural networks for sentence classification”. In: arXiv preprint arXiv:1408.5882
(2014).

[31] C. Hutto and E. Gilbert. “Vader: A parsimonious rule-based model for sentiment analysis of
social media text”. In: Proceedings of the International AAAI Conference on Web and Social
Media. Vol. 8. 1. 2014.

[32] P. Atanasova, J. G. Simonsen, C. Lioma, and I. Augenstein. “A Diagnostic Study of Explain-
ability Techniques for Text Classification”. In: arXiv preprint arXiv:2009.13295 (2020).

[33] Y. Freund and L. Mason. “The alternating decision tree learning algorithm”. In: icml. Vol. 99.
Citeseer. 1999, pp. 124–133.

[34] M. Gick and S. Matwin. “The importance of causal structure and facts in evaluating expla-
nations”. In: Machine Learning Proceedings 1991. Elsevier, 1991, pp. 51–54.

[35] F. Doshi-Velez and B. Kim. “Towards a rigorous science of interpretable machine learning”.
In: arXiv preprint arXiv:1702.08608 (2017).

[36] R. Guidotti, J. Soldani, D. Neri, A. Brogi, and D. Pedreschi. “Helping your docker images
to spread based on explainable models”. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer. 2018, pp. 205–221.

[37] R. Guidotti and A. Monreale. “Data-Agnostic Local Neighborhood Generation”. In: 2020
IEEE International Conference on Data Mining (ICDM). IEEE. 2020, pp. 1040–1045.

[38] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. “LOF: identifying density-based local
outliers”. In: Proceedings of the 2000 ACM SIGMOD international conference on Management
of data. 2000, pp. 93–104.

https://doi.org/10.21428/594757db.23db72bf
https://caiac.pubpub.org/pub/zzjy8kzu
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1109/COMPSAC.2018.00114

	1. Introduction
	2. Related works
	3. DICTA
	3.1. Influential Sentences Extraction
	3.2. Neighborhood Generator
	3.3. Local Decision Tree & Explanation

	4. Experiments
	4.1. Experimental Setting
	4.2. Salient Scores and Sentimental Polarity Agreement
	4.3. Qualitative Evaluation of Decision Rules
	4.4. Fidelity Evaluation
	4.5. Synthetic Neighborhoods Evaluation

	5. Conclusions
	References
	References


