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Abstract
In applying Natural Language Processing to support mental health care, gathering

annotated data is difficult. Recent work has pointed to lapses in approximative anno-
tation schemes. While studying gaps in prediction accuracy can offer some information
about these lapses, a more careful look is needed. Through the use of Influence Functions,
quantification of the relevance of training examples according to their type of annotation
is possible. Using a corpus aimed at suicidal risk assessment containing both crowd-
sourced and expert annotations, we examine the effects that these annotations have on
model training at test time. Our results indicate that, while expert annotations are more
helpful, the difference with respect to crowdsourced annotations is slight. Moreover, most
globally helpful observations are crowdsourced, pointing to their potential.
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1. Introduction
Recently, there has been increased research interest in utilizing Natural Language Pro-

cessing (NLP) techniques in the service of mental health care. Mental health is a major
public health issue, accounting for 13% of the global burden of disease [1], leading to higher
rates of morbity and mortality [2]. Thus, early intervention in mental health has become
a key issue in service reform [3, 4]. NLP can play an important part in this aspect of care
by analyzing textual content from social media, widely used by at-risk persons to discuss
their mental state [5]. NLP research efforts will attempt to infer models that predict the
mental health status of a person given their writings on various online social media. This
assessment will usually pertain to specific mental health disorders, symptoms or harmful
behaviors. However, there is large variation in the nature of these assessments. Clinically
grounded assessments are costly. Where annotation in other NLP tasks can be carried out
on the documents to be analyzed, in the context of mental health, annotation pertains to
the author, and clinically grounded annotation requires access to this person. This makes
the data collection process difficult. To boot, sophisticated prediction models often require
large amounts of training data. This has given rise to a variety of what could be understood
as approximations to clinical truth. These vary from the use of affiliation to specific fora or
groups [6] and mentions of diagnosis [7] to the use of clinical self-report tools [8].

However, there is concern about the validity of these approaches. That is, while models
can be developed to accurately predict these assessments on unseen data, it is possible that
these assessments capture a different construct than the desired ones, i.e. the clinically
actionable aspects of mental health of interest [9]. Evaluating the predictive performance
of models issuing from these annotation schemes on clinically grounded data can offer some
insight into this phenomenon [10]. Nonetheless, a closer examination of the inner workings of
these models may offer richer information as to whether these annotations remain disjointed
from clinically sounder ones.

In addition to explanations aiming at external stakeholders [11], explainability techniques
can provide useful insights for the development and deployment of machine learning mod-
els [12, 13]. In NLP, this can take the form of feature importance [14, 15] and saliency
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maps [16] techniques, which can give insights regarding words or spans from the input text.
Alternatively, methods explaining with examples [17] such as Influence Functions (IF) can
give valuable insights on such complex tasks. In fact, evidence suggests that IF are more
appropriate explanations than saliency maps for non trivial NLP tasks such as language
understanding [18]. Risk assessment of mental health issues from social media content is
such a complex classification task as the labels usually require additional information about
the authors. The work presented in this paper seeks to study the use of IF in mental health
assessment by NLP. Specifically, its goals are to:

RQ1 Examine the impact of crowdsourced annotations on model predictions.
RQ2 Assess whether crowdsourced annotations are globally more influential than expert

annotations.
The paper is structured as follows. Section 2 defines influence functions and Section 3
discusses the methodology used to conduct our experiments. Finally, Section 4 discusses
the results, and Section 5 concludes this paper with potential future work.

2. Influence Functions

Influence Functions (IF) – a classic notion from robust statistics – monitor the changes
occurring after small modifications to the problem formulation [19]. This analysis rely on
the hypothesis that slight perturbations should cause at most small variations on the results
of a model or a statistical test [20]. The most popular of said perturbations regards the
distribution of the observations.

Given a machine learning model, IF aim to answer the following question: what if we
had a different training set? By infinitesimally up-weighting an observation z, IF allow
practitioners to assess the influence of this data point on a given prediction: a large loss
variation indicates that z is influential. From an explainability standpoint, the sign of the
loss variation indicates whether z is helpful or not for the prediction. Moreover, one can
also probe local robustness by monitoring parameter change [21]. Other alternatives, such
as assessing the stability of the predictions between both sets of parameter values, can
also be considered. Thus, IF can improve algorithmic transparency as defined by Lipton
[17] and can indicate the presence of predictive uncertainty [22] More formally, let D =
{(xk, yk) : 1 ≤ k ≤ n} be the training data of a classic supervised task. The learned
parameters θ̂ are obtained by resolving optimization problem argminθ

∑
k L(zk, θ), where

L is the loss function combined with regularization factors if applicable. To assess the
influence of zi ∈ D, we consider the parameter change occurred when up-weighting it by ϵ,
i.e. θ̂ϵ,i := argminθ

∑
k L(zk, θ) + ϵL(zi, θ). The parameter change is approximately

θ̂ϵ,i −θ̂ ≈ ϵ
d θ̂ϵ,i
dϵ

∣∣∣∣∣
ϵ=0

= −ϵH−1

θ̂
∇θ L(zi, θ̂) (2.1)

where H−1

θ̂
:= 1

n

∑
k ∇2

θ L(θ̂, zk). Calculation details of the right term in (2.1) are provided
in Section 5.2 of [19]. Some properties of this estimator are discussed in [23]. To assess
whether an observation zi is helpful or not to predict another observation z̃, we refer to the
variation of the loss function

I(z̃, i) := dL(z̃, θ̂ϵ,i)
dϵ

∣∣∣∣∣
ϵ=0

= −∇θ L(z̃, θ̂)⊤H−1

θ̂
∇θ L(zi, θ̂) (2.2)

obtained with the chain rule [21]. For (2.1) and (2.2) to hold, the loss function must be twice
differentiable and convex, assumptions that most machine learning models do not uphold.
Nonetheless, this approximation can remain fairly accurate for Transformer models [13, 18]
and smaller neural architectures [21, 24].
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3. Methodology and Resources
Influence Functions. IF are particularly useful for error analysis as they bring forth "in-
sights about how models rely on and extrapolate from the training data" [21]. Hence, we use
IF to examine prediction errors and assess whether there is a correlation with the annotator
of those influential (helpful or harmful) examples with respect to (2.2). Additionally, IF
can give insights regarding latent structures from the training set [13]. To examine RQ2,
the average influence as well as globally influential examples are considered. A data point
is globally influential when the absolute value of its influence ranks among the highest 25%
for at least half the test examples. As the dominant class comprises 44% of the test set
(see Table 1), this guarantees that these examples are influential for multiple risk levels.
FastIF [13] is used to compute influence functions. A damping parameter of 5E-3 is added
to the diagonal of Hθ̂ to ensure that all the eigenvalues are positive.
Data. The experiments conducted concern suicidal risk assessment using data from CLPsych
[25, 26]. The data consists of posts written on the Reddit forum r/SuicideWatch, which aims
to support peers struggling with suicidal ideation (This corresponds to CLPsych 2019 Task
A v2.). The suicidal risk estimated for each author is placed on a four-point scale – None,
Low, Moderate, and Severe. The task is modified slightly for the purposes of this investiga-
tion: each post is treated as a single observation, using the label of its author as its own. The
task then becomes one of document classification, simplifying the architecture. While some
authors span several posts, 73% count exactly one post. Further, given that annotation was
performed on the basis of these documents, this simplification remains sound.

Lastly, the original dataset is divided between observations annotated by crowdsource
workers and experts. As such one additional modification was made to it: whereas expert-
annotated examples were used only in testing by [25], expert-annotated examples were
used in training in the present work so as to be assess their influence. Specifically, expert
annotations are spread into the training, validation and test sets at rates of 60%, 20% and
20%, respecting label proportions. Table 1 presents the distribution of risk levels among
different annotation sources. For further details regarding the annotation guidelines and
process, see [25]. Word counts for each set are presented in Table 5 (see Appendix A).
Model. The classifier is an adaptation of the RoBERTa model [27]. In order to keep the
model small, the parameters of all but the topmost Self-Attention layers are left fixed. To
mitigate class imbalance, observations are weighted in inverse proportion to the weight of
their class. The model is trained over 30 epochs with mini-batches of 32 observations, using
the Adam optimizer (β1 = .9, β2 = .999) [28] with a learning rate of 5E-5 and a weight
decay of 1E-5. At the end of each epoch, the model is evaluated in order to select the
best-performing point. This evaluation is done on a randomly selected validation set with
equal proportions of each of the four classes. The selection is based on the macro-aggregated
f1-score.

4. Results
Models are evaluated using macro-averaged precision, recall and f1-score, counteracting

label imbalance. Classification results are presented in Table 2. Furthermore, to assess

training set validation set test set
Risk level crowdsourced expert crowdsourced expert crowdsourced expert
None 130 28 32 8 34 9
Low 48 47 11 15 13 15
Moderate 124 99 30 31 41 32
Severe 436 57 108 18 98 18

Table 1. Distribution of risk levels of each post according to their annotator

https://github.com/salesforce/fast-influence-functions
https://www.reddit.com/
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Risk level precision recall f1-score
None .59 .77 .67
Low .32 .43 .36
Moderate .30 .18 .22
Severe .51 .53 .52
Macro-avg .43 .48 .45

Table 2. Test results on CLPsych data combining expert and crowdsourced annotations
for training and test sets

crowdsourced expert
None Low Moderate Severe None Low Moderate Severe

None 25 1 2 6 8 0 1 0
Low 1 6 1 5 3 6 2 4
Moderate 4 9 9 19 0 2 4 26
Severe 15 12 18 53 0 2 7 9

Table 3. Confusion matrix of test set predictions with respect to annotation source

RoBERTa CLaC [29]
Risk level precision recall f1-score f1-score
None .86 .75 .80 .74
Low .38 .38 .38 .24
Moderate .37 .46 .41 .40
Severe .63 .60 .61 .54
Macro-avg .56 .55 .55 .48

Table 4. Results obtained training and testing only on crowdsourced annotations against
best results at CLPsych2019

the relevance of the classification approach, a second model was trained with the same
configurations using the training and test sets from [26]. At test time, the highest-risk label
predicted for a document becomes the predicted label for its author. Results are presented
in Table 4.
RQ1. As our results show, the Moderate risk category appears to be poorly captured by our
model. This label is seldom predicted, and most Moderate risk observations are assigned
Severe risk instead (see Table 3). Furthermore, throughout misclassified Moderate risk
examples, the majority of highly helpful examples are from the Severe class. Of those, 88%
were labeled by crowdsourced annotators. This could indicate the presence of mislabeled
data: Moderate risk being classified as Severe by crowdsourced annotators. This is reflected
by the higher frequency of Severe risk in crowdsourced annotation, as compared to expert
annotation (see Table 1), and is consistent with previous findings [25].

While error rates are similar between annotators, the model is more likely to underes-
timate the risk level of crowdsourced annotated data. In particular, 15% of Severe risk
crowdsourced-annotated data are classified as No risk while none of the expert-annotated
ones are. Further, the prediction of Moderate risk data follows a similar pattern. This is
problematic for triage-based applications, given that a high recall for high risk documents
is of utmost importance.
RQ2. Among training examples found to be helpful to classification, expert-annotated ones
had higher influence on average than examples issuing from crowdsourced annotation (0.673
vs 0.561). In contrast, harmful examples from each annotation source had comparable influ-
ence (0.441 vs 0.443). This further suggests that expert annotations are of greater quality as
fine-tuning on them would likely improve the model performances [13]. Nonetheless, the gap
between annotation types is modest, which indicates that crowdsourced annotations have
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value. Additionally, most globally helpful examples are labeled as Severe risk, 14% of which
were expert-annotated. Thus, crowdsourced annotation actively contributes to improve our
model. In contrast, the examples most harmful to classification are labeled as Moderate
risk, with the balance falling slightly to crowdsourced annotation.

5. Conclusion and Future work
Our experiments demonstrate the potential of IF in analyzing the effects of annotation

quality on model predictions in suicidal risk assessment. Given, the importance of estab-
lishing the soundness of annotation in mental health applications, this area warrants further
study. Error correction could be applied in order to improve on our results, particularly for
low- and moderate- risk examples. Additional improvements could be made by considering
pretrained language models trained on domain-specific data or using domain adaptation.
Reproducibility. The source code is licensed under the GNU GPLv3 and the data are
provided on demand by the CLPsych organizers.
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Appendix A. Data statistics

training set validation set test set
Risk level mean std mean std mean std
None 146 172 160 217 154 183
Low 268 306 361 415 211 184
Moderate 235 255 272 273 210 190
Severe 213 242 174 203 251 211

Table 5. Mean and standard deviation of word counts
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