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Abstract

We study Bayesian approach for learning structures of Bayesian networks (BNs) with
local models. The local structures we focus on are Non-impeding noisy-AND Tree (NAT)
models due to their multiple merits. We extend meta-nets to allow encoding of prior
knowledge on NAT local structures and parameters. From the extended meta-nets,
we develop a Bayesian Dirichlet (BD) scoring function for evaluating alternative NAT-
modeled BN structures. A heuristic algorithm is presented for searching through the
structure space that is signi�cantly more complex than that of BN structures without
local models. We experimentally demonstrate learning of NAT-modeled BNs, whose
inference produces su�ciently accurate posterior marginals and is signi�cantly more
e�cient.
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1. Introduction

Learning BNs from data is an important task in probabilistic reasoning. BNs avoid
combinatorial explosion on the number of variables by encoding conditional independence
in graphical structures, but space and inference time grow exponentially in the number of
causes per e�ect due to tabular conditional probability distributions (CPDs). To overcome
this limitation of tabular BNs, local models have been applied, such as noisy-OR, noisy-
MAX [1], context-speci�c independence (CSI) [2], DeMorgan [3], tensor-decomposition [4],
and cancellation [5]. Merits of local models lead to learning BNs with local structures.

We focus on NAT local models [6] due to several merits: simple causal interactions (re-
inforcement/undermining), expressiveness (recursive mixture of causal interactions, multi-
valued, ordinal or nominal [7]), generality (generalizing noisy-OR, noisy-MAX, and DeMor-
gan), and orthogonality to CSI. While tabular BN inference is exponential in treewidth,
inference is tractable with NAT-modeled BNs of high treewidth and low density. In partic-
ular, space of a tabular BN (measured by the total number of CPD parameters) is O(Ksn),
where K is the number of variables, s bounds domain sizes of variables, and n bounds
numbers of causes (parents) per variable. In fully NAT-modeled BNs (see Section 2.2),
dependencies of variables on their parents are quanti�ed by NAT models instead of tabular
CPDs, resulting in O(K s n) space. This e�ciency extends to inference when NAT-modeled
BNs have structures of high treewidth (lower-bounded by n) and low density (measured by
percentage of arcs beyond being singly connected) 1.

A large literature exists on learning tabular BNs, e.g., [8�12]. A common method is
to combine heuristic search with a scoring function, where MDL [9] and BD [8, 10, 11]
scores are often applied. This work focus on learning NAT-modeled BNs, due to their above
merits. A recent work [13] enables learning NAT-modeled BNs based on MDL scores. The
contribution of this work is a novel framework for learning structures of NAT-modeled BNs
from data based on (extended) BD scores.

1Low density itself does not imply tractability: Tree tabular BNs (low density) of large n (large treewidth)
are exponential in n.
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In the remainder, Section 2 reviews backgrounds on BD scores for learning tabular BN
structures and on NAT-modeled BNs. Section 3 introduces the task of learning NAT-model
BN structures with BD scores. Sections 4 through 6 present component BD subscores on
likelihood, local structure prior, and global structure prior. Section 7 describes the heuristic
search algorithm and analyzes its complexity. Experimental study is reported in Section 8.

2. Background

2.1. BD Scores for Learning Tabular BN Structures

A tabular BN over a set V of variables has a structure G and a collection Θ of parameter
sets. G is a directed acyclic graph (DAG), whose nodes are labeled by variables in V . Each
x ∈ V and its parents π in G forms a family. Dependency of x on π is speci�ed by a set of
CPDs, with one CPD Pr(x|π = τ) per instantiation τ of π. Each parameter set θx|τ ∈ Θ
speci�es a CPD Pr(x|π = τ) (as domain knowledge).

The Bayesian approach to structure learning integrates prior knowledge (denote by P ())
on G and Θ with data D: P () expresses subjective probabilistic knowledge about the proba-
bilistic domain knowledge expressed through Pr(). We assume that D has N = |D| records
on V , is complete (no missing value), and is exchangeable [10]. Given a candidate struc-
ture G, the probability P (G,D) = P (G)P (D|G) is evaluated, where P (G) (structure prior)
encodes prior knowledge on G. Likelihood P (D|G) can be evaluated using a meta-net Φ,
derived from the base-net G and data D, which integrates prior knowledge on Θ with data
D. For each θx|τ ∈ Θ, there is a variable in Φ, which we denote also by θx|τ . Prior knowledge
on Pr(x|π = τ) is encoded by a probability density function (pdf) ρ(θx|τ ). For each record

di ∈ D (superscripts index records), meta-net Φ contains an instance Gi of base-net G. For
each x ∈ V , besides π from G, x in Gi has extra parents θx|τ , one per instantiation of π.

Fig. 1 (a) shows a base-net, where V = {a, b}, a ∈ {a0, a1}, and b ∈ {b0, b1}. Without
confusion, when variables are di�erentiated by symbols, subscripts index variable values,
and when variables are di�erentiated by 1st subscripts, 2nd subscripts index values. Since
|D| = 2, the meta-net in (b) contains G1 (including a1 and b1) and G2. Meta-net topology
(no direct arcs among θ nodes) encodes the parameter independence assumption [11].

Figure 1. (a) Base-net. (b) Meta-net.

We assume that prior pdf ρ(θx|τ ) is Dirichlet. In particular, let s be the domain size of

x, i.e., x ∈ {x1, ..., xs}. Hence, θx|τ = {θx1|τ , ..., θxs|τ} with
∑s
i=1 θxi

= 1. The Dirichlet pdf
with integer exponent parameters ψxi|τ (i = 1, ..., s) can be written as

ρ(θx|τ ) = η
∏
i

(θxi|τ )
(ψxi|τ )−1,

where η is a normalizing constant. Sum ψx|τ =
∑s
i=1 ψxi|τ is the equivalent sample size.

Given a base-net G, Dirichlet priors on parameters in Θ, and complete data D, using the
meta-net with D as evidence, likelihood P (D|G) can be evaluated [8, 11] as

P (D|G) =
∏
x∈V

∏
τ

Γ(ψx|τ )

Γ(ψx|τ + ♯(τ))

∏
χ

Γ(ψχ|τ + ♯(χ, τ))

Γ(ψχ|τ )
, (2.1)
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where Γ() is the Gamma function, ♯(χ, τ) counts records of D that instantiate family of x
to (x = χ, π = τ), and ♯(τ) is similarly de�ned. P (G,D) = P (G)P (D|G) is referred to as
the BD score of structure G given data D.

Denoting as vector, θx|τ = (θx1|τ , ..., θxs|τ ), the Bayes estimate of θx|τ given D is

θbex|τ = (θbex1|τ , θ
be
x2|τ , ...) =

∫
θx|τ . ρ(θx|τ |D)dθx|τ . (2.2)

We denote θbex|τ = {θbeχ|τ} and θ
be = {θbex|τ}.

2.2. NAT-modeled BNs

A NAT model [6, 7] is de�ned over an e�ect e and a set of n ≥ 2 causes C = {c1, ..., cn},
where e ∈ De = {e0, ..., eη} (η ≥ 1) and ci ∈ {ci0, ..., cimi} (i = 1, ..., n; mi ≥ 1). C and e
form a family in BN, whose dependence is quanti�ed by CPDs in tabular BNs. Values e0
and ci0 are inactive. Other values (may be written as e+ or ci+) are active.

For simplicity, we denote domain knowledge by P () in this subsection (rather than by
Pr()). A causal event is a success or failure depending on if e is active up to a given value, is
single- or multi-causal depending on the number of active causes, and is simple or congregate
depending on value range of e. P (ek ← cij) = P (ek|cij , cz0 : ∀z ̸= i) (j > 0) is probability
of a simple single-causal success, and

P (e ≥ ek ← c1j1 , ..., cqjq ) = P (e ≥ ek|c1j1 , ..., cqjq , cz0 : cz ∈ C \X)

is probability of a congregate multi-causal success, where j1, ..., jq > 0, X = {c1, ..., cq}
(q > 1). The latter may be denoted as P (e ≥ ek ← x+). Interactions among causes may be
reinforcing or undermining as de�ned below.

De�nition 1. Let ek be an active e�ect value, R = {W1, ...,Wm} (m ≥ 2) be a given
partition of a set X ⊆ C of causes, S ⊂ R, and Y = ∪Wi∈SWi. Sets of causes in R
reinforce each other relative to ek, i� ∀S P (e ≥ ek ← y

+
) ≤ P (e ≥ ek ← x+). They

undermine each other i� ∀S P (e ≥ ek ← y
+
) > P (e ≥ ek ← x+).

A NAT consists of one or more Non-Impeding Noisy-AND (NIN-AND) gates. A direct
gate involves disjoint sets of causes W1, ...,Wm. Each input event is a success e ≥ ek ← wi+
(i = 1, ...,m), e.g., Fig. 2 (a) where Wi is a singleton. Output event e ≥ ek ← w1+, ..., wm+

has probability
∏m
i=1 P (e ≥ ek ← wi+). Direct gates encode undermining interactions.

Each input of a dual gate is a failure e < ek ← wi+, e.g., Fig. 2 (b). A dual gate output
event e < ek ← w1+, ..., wm+ has probability

∏m
i=1 P (e < ek ← wi+) and satis�es relation

P (e < ek ← ...) = 1− P (e ≥ ek ← ...). Dual gates encode reinforcing interactions.

Figure 2. Direct gate (a), dual gate (b), and NAT (c).

Fig. 2 (c) shows a NAT, where causes h1 and h2 reinforce each other, and so do b1
and b2. However, the two groups undermine each other. That is, for gate g1, each Wi

(as in Def. 1) is a general set. See [6] for a formal de�nition of NATs. From the NAT
and probabilities of its input events, in the general form P (ek ← cij) (j, k > 0), called
single-causals, P (e ≥ e1 ← h11, h21, b11, b21) can be obtained. From single-causals and all
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derivable NATs, CPDs P (e|h1, h2, b1, b2) are uniquely speci�ed. A NAT model is speci�ed
by the topology and single-causals with the space linear in n.

The leaky cause for an e�ect e represents all causes of e not explicitly named. A leaky
cause may or may not be persistent [1]. A non-persistent leaky cause can be modeled the
same way as other causes. A persistent leaky cause is always active and leads to special
issues [7].

A BN where dependencies of some families are speci�ed as NAT models (instead of tabular
CPDs) is a NAT-modeled BN. If all families of more than one parent are NAT-modeled, the
BN is fully NAT-modeled. A tabular BN has O(Ksn) space, while a fully NAT-modeled
BN has O(K s n) space. CPDs of a BN family can be approximated into a NAT model by
compression [7]. Hence, a tabular BN can be approximated by a fully NAT-modeled BN.
Inference methods for tabular BNs can be applied to NAT-modeled BNs by converting them
into e�cient tabular BNs, e.g., by trans-causalization [14]. The inference is tractable when
NAT-modeled BNs have high treewidth and low density.

3. Learning NAT-model BN Structure with BD Scores

Learning structures of tabular BNs from data has been actively researched since 1990s.
A widely applied approach is to evaluate each candidate structure by a scoring function,
such as MDL or BD, and to limit the exponential structure space by heuristic search. To
overcome the limitation of tabular BNs considered in Section 1, learning BNs with local
models has also been pursued [15�17]. Work in [18, 19] explored local equality conditions
such as CSI with decision trees or decision graphs as local structures, based on MDL or BD
scores. Inequality conditions such as those in Def. 1 were explored in learning NAT-modeled
BNs based on MDL score [13].

In this work, we present the �rst study of structure learning of NAT-modeled BNs based
on the Bayesian approach and BD score. A NAT-modeled BN consists of a global DAG
structure G, a local NAT structure L (including NAT topologies for all NAT-modeled fam-
ilies), single-causal parameters for all NAT families, and CPD parameters of the remaining
tabular families. Given data D, we evaluate a candidate structure (G,L) by BD score

P (G,L|D) = αP (D|G,L)P (L|G)P (G),
where α is the normalizing constant 1/P (D). In the following sections, we consider each
of the 3 components, P (D|G,L), P (L|G), and P (G), which we refer to as likelihood, local
structure prior, and global structure prior.

Note that the learned BN is not necessarily fully NAT-modeled: Whether a family in the
outcome structure is NAT-modeled or tabular depends on the score and search.

4. Likelihood

To de�ne likelihood P (D|G,L) for a NAT-modeled structure (G,L), we extend the meta-
net for learning tabular BNs to learning NAT-modeled BNs by representing local NAT
models and single-causal parameters. We do so with an example �rst and then generalize.

[NAT-modeled meta-nets] Consider the base-netG in Fig. 3 (a), where V = {a, b, c, d},
all variables are binary, and data D has size N = 2. Since c has 2 parents in G, L may
specify its family to be tabular (tab) or NAT-modeled. If NAT-modeled, it may be a direct
NIN-AND gate (di) or a dual gate (du). This local model type is represented in the meta-net
by variable ωc ∈ {tab, di, du} in Fig. 3 (b). Since (G,L) is given, P (ωc) consists of extreme
values. For instance, if L speci�es c family as a direct gate, then P (ωc = di) = 1.

If family of c is tabular, it has 4 CPDs, and the meta-net has 4 corresponding θ nodes
(Fig. 3 (b) bottom). If family of c is NAT-modeled, only two θ nodes are well-de�ned:
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Figure 3. (a) Base-net structure G. (b) Meta-net.

θc←a1 = θc|a1,b0 and θc←b1 = θc|a0,b1 . Making ωc as a parent of c allows all such cases to be
handled correctly through CPD P (c|a, b, ωc, θc|a0,b0 , θc|a0,b1 , θc|a1,b0 , θc|a1,b1).

In general, for each variable x of 2 or more parents in G, the meta-net has a ωx variable
on its local model type. The domain of ωx includes value tab for tabular, and possible NATs
for the x family. For instance, if x has 5 parents in G, its family has 472 possible NAT
models, and ωx has domain size 473. Given (G,L), we have P (ωx) ∈ {0, 1}.

For each x ∈ V , the meta-net contains as many θ nodes as the meta-net for tabular BNs,
one per CPD Pr(x|π = τ). When x family is NAT-modeled, each necessary θ node maps
to a single-causal distribution Pr(x ← cij), where cij is an active value of cause ci, and
remaining θ nodes are super�uous. Since Pr(x ← cij) = Pr(x|τ), where τ has exactly one
active value, we denote the θ node by θx|τ (instead of θx←cij ) for consistency with the tabular
case. Hence, when local structure L asserts x family to be NAT-modeled, only single-causal
θ nodes are relevant. This dynamic dependency is e�ected through CPD P (x|π, ωx, ...) in
the meta-net. Each θ node has a Dirichlet prior pdf.

[Properties of NAT-modeled meta-nets] We refer to meta-nets for learning tabular
BNs as T-meta-nets. We term meta-nets for learning NAT-modeled BNs (de�ned above) as
N-meta-nets. N-meta-nets have the following properties.

Theorem 1. Every NAT-modeled BN structure (G,L) over V has a well-de�ned N-meta-net
given complete data D.

Proof: Let (G,L) be a NAT-modeled BN structure and D be the data over V . Initialize
the N-meta-net as the T-meta-net for a tabular BN of structure G and data D, which
consists of one instance of G for each record of D, a θ node for each CPD of the tabular
BN, and corresponding arcs. For each variable v ∈ V , denote the set of θ nodes, one per
CPD of v, by Θv.

For each x ∈ V of parents π in G, where |π| ≥ 2, add a variable ωx to the N-meta-net.
The domain of ωx consists of value tab and one value for each possible NAT topology over
the x family. For each copy of x (one per record of D) in the N-meta-net, add ωx as a
parent, set CPDs P (x|π, ωx,Θx), and set P (ωx) to be deterministic according to the local
model type of x speci�ed by L. The N-meta-net for (G,L) and D is now constructed. [End]

Note that existence of ω variables allows an N-meta-net to easily switch among all al-
ternative NAT topologies for each NAT family. In other words, the N-meta-net can easily
switch among all L local structures for a given global structure G, by modifying the prior
distributions of ω variables. Furthermore, N-meta-nets are used to derive BD scores for
NAT-modeled BNs, but are not directly computed during structure learning, as seen below.
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Next, we show that parameter independence of T-meta-nets (see, e.g., [11]) also applies
to N-meta-nets. The proof utilizes the well-known d-separation [20].

Theorem 2. In an N-meta-net, any two disjoint subsets of θ variables are independent.

Proof: It su�ces to show that any two θ nodes are d-separated. Each θ node has only
outgoing arcs in the N-meta-net. Hence, any path between two θ nodes u and v cannot be
directed. There must be a node x that is head-to-head on the path (→ x←), which blocks
the path, e.g., the path (θa, a

1, c1, b1, θb) in Fig. 3 (b). Since every such path is blocked, u
and v are d-separated. [End]

Parameter independence of N-meta-nets also holds conditioned on data D:

Theorem 3. In an N-meta-net, any two disjoint subsets of θ variables are independent
conditioned on a complete data set D.

Proof: It su�ces to show that any two θ nodes are d-separated conditioned on D. Con-
sider a path between θ nodes u and v, with remaining nodes on the path Z ⊂ V . Since D
is complete, every z ∈ Z is observed. If there is a node z that is head-to-tail (→ z →) or
tail-to-tail (← z →) on the path, then the path is blocked, e.g., (θa, a

1, c1, b1, d1, θd|b0) in
Fig. 3 (b).

If no node z ∈ Z exists on the path that is head-to-tail or tail-to-tail, then the path must
be u→ x← v, where x is head-to-head. It must be the case that u denotes θx|τ , v denotes

θx|τ ′ , and instantiations τ and τ ′ of parents π of x (in G) di�er, e.g., (θc|a0,b0 , c
1, θc|a0,b1) in

Fig. 3 (b). Since at most one of τ and τ ′ is consistent with D, at least one arc, u → x or
x← v, can be equivalently removed, and the path disappears.

Since every path between u and v is either blocked or can be equivalently removed, u and
v are d-separated. [End]

Note that Theorem 2 still holds if the subsets include ω variables. However, that is not the
case for Theorem 3. Conditioned on D, a θ node and a related ω node are not d-separated.
For instance, the path (ωc, c

1, θc|a0,b1) in Fig. 3 (b) is not blocked: Depending on the local
model type, the θ node plays di�erent roles.

[Subscore of tabular family] Consider likelihood score P (D|G,L) next. By Eqn. (2.1),
P (D|G) for tabular BNs is decomposable by (x, π) family, as well as by π = τ :

P (D|G) =
∏
x∈V

SS(D,x) =
∏
x∈V

(∏
τ

SS(D,x, τ)

)
,

where subscore for family (x, π) with π = τ is

SS(D,x, τ) =
Γ(ψx|τ )

Γ(ψx|τ + ♯(τ))

∏
χ

Γ(ψχ|τ + ♯(χ, τ))

Γ(ψχ|τ )
, (4.1)

and subscore for family (x, π) is

SS(D,x) =
∏
τ

SS(D,x, τ). (4.2)

The decomposability is a direct consequence of parameter independence in T-meta-nets.
By Theorem 3 on parameter independence in N-meta-nets, we have decomposability for
NAT-modeled likelihood P (D|G,L):

P (D|G,L) =
∏
x∈V

SS(D,x). (4.3)

As N-meta-nets represent tabular families equivalently as T-meta-nets, subscore SS(D,x)
for a tabular (x, π) family can be evaluated by Eqns. (4.2) and (4.1).
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[Extending Bayes estimates of parameters] BD scores for tabular BNs can be de-
rived using the following relation [11]:

P (α|G,D) = Prθbe(α), (4.4)

where α is an event over V , P (α|G,D) is its posterior from the T-meta-net, and Prθbe(α)
is obtained from the base-net parameterized by Bayes estimates. In N-meta-nets, only
single-causal θ nodes are well-de�ned for NAT families. Non-single-causal parameters are
unde�ned (their θ nodes are super�uous), and so are their Bayes estimates, which limits
applicability of the above relation. To resolve this issue, we extend Bayes estimates to count
for NAT-models:

De�nition 2. Let (x, π) be a NAT-modeled family. Instantiation π = τ is Type 0 if τ has
no active value, is Type 1 if τ has exactly 1 active value, and is Type 2 if τ has 2 or more
active values.

If τ is Type 1, Bayes estimate θbex|τ follows Eqn. (2.2). If τ is Type 2, θbex|τ is determinis-

tically derived from Type 1 Bayes estimates. If τ is Type 0, θbex|τ ∈ {0, 1}.

In the N-meta-net of Fig. 3, if ωc = di, θc|a0,b1 and θc|a1,b0 are well-de�ned, but θc|a0,b0
and θc|a1,b1 are super�uous. When θbec|a0,b1 = (0.1, 0.9) and θbec|a1,b0 = (0.3, 0.7) (τ is Type 1),

we have θbec|a0,b0 = (1, 0) (τ is Type 0) and θbec|a1,b1 = (0.37, 0.63) (τ is Type 2).

[Subscore of NAT family] From Def. 2 and Eqn. (4.4), we have Eqn. (4.5) for NAT-
modeled BNs:

P (α|G,L,D) = Prθbe(α), (4.5)

where P (α|G,L,D) is from the N-meta-net. Denote data of size N by D = (d1, ..., dN ) and
Di = (d1, ..., di). From Eqn. (4.5), we have P (di|G,L,Di−1) = Prθbei−1

(di), where θbei−1 is

Bayes estimates given Di−1. By the chain rule of BNs, Prθbei−1
(di) =

∏
χ,τ∼di θ

be
χ|τ,i−1, where

χ, τ ∼ di selects (x, π) that is consistent with di. From the above, we have

P (D|G,L) =
N∏
i=1

P (di|G,L,Di−1) =

N∏
i=1

∏
χ,τ∼di

θbeχ|τ,i−1 =
∏
x∈V

(
N∏
i=1

θbeχ|τ,i−1

χ,τ∼di

)
=
∏
x∈V

SS(D,x).

Since D is exchangeable, the order of data records in the 2nd expression does not matter.
The 4th expression means that factors for each x family are independent of others. Hence,
in 4th expression, data records relative to each x may be ordered di�erently. Therefore, for
each NAT x family, we order records in the 4th expression from 1 to N by type of τ : Type
0 records �rst, followed by Type 2, and followed by Type 3, breaking ties arbitrarily. We
analyze subscore SS(D,x) for a NAT family below, using this order:

Consider contribution of record di to SS(D,x), where χ, τ ∼ di and τ is Type 0. If χ
is active, (χ, τ) is impossible for NAT x family. Hence, θbeχ|τ,i−1 = 0, SS(D,x) = 0, and

P (D|G,L) = 0. It signi�es that (x, π) being NAT contradicts data D. Hence, either (x, π)
is tabular, or (x, π) is NAT with an (extra) persistent leaky cause. On the other hand, if χ
is inactive, then

θbeχ|τ,i−1 = 1, (4.6)

without visible impact to SS(D,x). In summary, if D has any di where χ is active and τ is
Type 0, P (D|G,L) = 0. If χ is inactive, di can be ignored when processing SS(D,x).

If τ is Type 1, contribution of record di to SS(D,x) is

θbeχ|τ,i−1 =
ψχ|τ + ♯i−1(χ, τ)

ψx|τ + ♯i−1(τ)
, (4.7)

where ♯i−1(χ, τ) counts records in Di−1 that instantiate family of x to x = χ and π = τ .
The collective contribution of all records where χ, τ ∼ di is SS(D,x, τ) by Eqn. (4.1).
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If τ is Type 2, contribution of record di to SS(D,x) is θbeχ|τ,i−1, where χ, τ ∼ di, and

it is determined by the x family NAT and relevant Type 1 Bayes estimates θbeχ′|τ ′,i−1, each

according to Eqn. (4.7). Due to the above type-based record ordering, all Type 1 records
are indexed lower than di. Hence,

θbeχ′|τ ′,i−1 =
ψχ′|τ ′ + ♯i−1(χ

′, τ ′)

ψx|τ ′ + ♯i−1(τ ′)
=
ψχ′|τ ′ + ♯(χ′, τ ′)

ψx|τ ′ + ♯(τ ′)
= θbeχ′|τ ′ .

It then follows that contribution of di to SS(D,x) is independent of index i:

θbeχ|τ,i−1 = θbeχ|τ . (4.8)

By Eqn. (4.8), if (χ|τ) occurs m times in D, they contribute (θbeχ|τ )
m to SS(D,x). This

reveals that the type-based record ordering is only convenient for justifying soundness, but
is not algorithmically necessary.

For example, consider G in Fig. 3 (a), L with c family modeled as a direct gate NAT,
and data D in Table 1. Families of a, b, d are tabular, and their SS(D,x) are 1/72, 1/252,
1/630, respectively. For NAT c family, numbers of records for Type 0, 1, 2 in D are 1, 5, 2,
respectively. Type 0 record has no visible impact to P (D|G,L). Type 1 records contribute
1/60 to SS(D, c), and produce θbec1|a1,b0 = 3/7 and θbec1|a0,b1 = 1/2. Hence, θbec1|a1,b1 =

3/14 and Type 2 records contribute 9/196 to SS(D, c). We have SS(D, c) = 3/3920 and
P (D|G,L) = 6.695× 10−11.

Table 1. Example data D

a b c d

a0 b0 c0 d1
a1 b0 c0 d1
a1 b0 c1 d0
a1 b0 c0 d0
a1 b1 c1 d1
a1 b1 c1 d0
a1 b0 c1 d0
a1 b0 c0 d0

5. Local Structure Prior

We next consider local structure prior P (L|G), where L speci�es the local structure for
every x family in G. Learning BNs with local decision trees was studied in [18] based on
MDL scores, and an alternative BD score was proposed with

P (L|G) = α2−DL(L), (5.1)

where DL() is description length under MDL principle, and α is normalizing constant.
Applying the idea to NAT-modeled BNs, we specify DL(x, Lx) for each x family, where Lx
extracts local structure for x family from L, and

DL(L) =
∑
x∈V

DL(x, Lx). (5.2)

If x family is tabular by L, we have (see [13])

DL(x, Lx = tab) =
1

2
log2(N)|Pr(x|π)|. (5.3)

If x family is structured as a NAT Tx, we have

DL(x, Lx = nat) = DL(Tx) +DL(SCx), (5.4)
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where DL(Tx) and DL(SCx) are description lengths of NAT and single-causals [13].
For example, consider G in Fig. 3 (a), L with c family NAT-modeled, and data size

N = 8. We have DL for a, b, c, d as 1.5, 1.5, 4, 3, respectively, and the local structure prior
P (L|G) without α is 0.3535 ∗ 0.3535 ∗ 0.0625 ∗ 0.125 = 0.000976.

6. Global Structure Prior

We consider global structure prior P (G). Preference of simpler DAG G is suggested in
[8, 15] by assuming (1) independent parent sets:

P (G) =
∏
x∈V

P (π), (6.1)

and (2) independent individual parents: P (y → x|z → x) = P (y → x), where y → x is an
arc in G. Since no speci�c form of P (y → x) is suggested in [8, 15], we develop the following:

We assign
P (π) = η k|π|, (6.2)

where k ∈ (0, 1) and η is a constant. When x is root in G, P (π = ∅) = η. It can be shown
that the assignment satis�es the following properties, which favor simpler structures:

(1) If x has w parents and v has q > w parents, then P (πx) > P (πv).
(2) If G has n nodes, then P (G) = ηnkm, where m counts the number of arcs in G.

From the 2nd property, constant η can be ignored when comparing two DAGs. This is
desirable as the number of alternative G is intractable. As an example, for G in Fig. 3 (a),
assuming k = 0.5, the global structure prior without η is 1 ∗ 1 ∗ 0.25 ∗ 0.5 = 0.125.

We conclude BD scores for learning NAT-modeled BNs with their decomposability:

Theorem 4. The likelihood, local structure prior, and global structure prior de�ned above
for learning NAT-modeled BNs are each decomposable by variable family, and so is the BD
score speci�ed by them.

Proof: From Eqns. (4.3), (4.2), (4.1), (4.6), (4.7), and (4.8), it follows that P (D|G,L) is
multiplicatively decomposable by x ∈ V . From Eqns. (5.1), (5.2), (5.3), and (5.4), P (L|G)
is multiplicatively decomposable by x ∈ V . From Eqns. (6.1) and (6.2), P (G) is multiplica-
tively decomposable by x ∈ V . The theorem then follows. [End]

7. Algorithm and Complexity

Learning BNs is NP-complete, and learning NAT-modeled BNs involves an even larger
(G,L) space. For instance, a single NAT family of 8 causes has 1,320,064 alternative NAT
structures (each encodes a unique set of causal interactions among the causes). A given
G with exactly two such NAT families would have 1.7 × 1012 alternative L structures. To
improve e�ciency of learning, we apply heuristic search as presented below. The presen-
tation focuses on structure learning, although our implementation (Section 8) also learns
parameters (tabular CPDs and NAT single-causals).

The top level algorithm LearnNatBnByBD takes data D over V as input. It learns
a NAT-modeled BN structure (G,L), where G is possibly over a superset of V (due to
persistent leaky causes). It uses heuristic search to �nd a best structure over the intractable
(G,L) space.

It adopts a sequence of (G,L), from empty G to the �nal structure. Each (G,L) is
computed by OneRoundSearch and improves BD score. It di�ers from the previous (G,L)
by one arc (through arc operation add, delete or reverse), and may change local structure
for up to two families.
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Algorithm 1. LearnNatBnByBD(D,V )
1 init (G,L) to empty DAG, init Score to BD score of (G,L), Done = false;
2 while Done = false,
3 Done = true;
4 (G′, L′, Score′) = OneRoundSearch(G, L, V, Score, D);
5 if Score′ > Score, then (G,L) = (G′, L′), Score = Score′, Done = false;
6 return (G, L);

For OneRoundSearch, G is the best DAG before the round, G′ is a new DAG to be
evaluated, G∗ is the best new DAG so far in the round, and Score∗ ≥ Score on return. It
calls getBDScore for its key computation.

Algorithm 2. OneRoundSearch(G,L, V, Score,D)
1 (G∗, L∗) = (G,L), Score∗ = Score;
2 for each pair of u, v ∈ V ,
3 for each valid arc operation Op on G∗ over u, v,
4 apply Op on G∗ to obtain G′,
5 if G′ is cyclic, continue;
6 (L′, Score′) = getBDScore(G∗, L∗, Score∗, G′, D);
7 if Score′ > Score∗, then (G∗, L∗) = (G′, L′), Score∗ = Score′;
8 return (G∗, L∗, Score∗);

As input to getBDScore (see below), G and G′ di�er by one arc. By Theorem 4, it
su�ces for getBDScore to evaluate only subscores for families modi�ed in G′ (lines 3 and
8), and update Score′ (line 9). To avoid evaluating intractably many NATs for any x
family, the best NAT is selected heuristically by compression [7] (lines 6 and 7), rather than
by direct score evaluation. In line 6, x0 denotes inactive value of x and π0 denotes inactive
instantiation of π. On return from getBDScore, L′ di�ers from L by up to two families and
Score′ ≥ Score.

Algorithm 3. getBDScore(G,L, Score,G′, D)
1 L′ = L; Score′ = Score;
2 for each x ∈ V whose family structure in G′ di�ers from G,
3 get tabular subscore SStab for x family from G′, D by Eqns. (4.1), (4.2), (5.3), (6.2);
4 for parents π of x in G′, if |π| ≥ 2,
5 estimate Pr(x|π) from D;
6 if Pr(x0|π0) = 1, compress Pr(x|π) to get NAT Tx;
7 else compress Pr(x|π) to get NAT Tx with persistent leaky cause;
8 get NAT subscore SSnat for x family from G′, D by Eqns. (4.7), (4.8), (5.4), (6.2);
9 based on comparison of SStab and SSnat, update Score' and L′ on x family;
10 return (L′, Score′);

NAT Tx (lines 6 and 7) is obtained from Pr(x|π). However, single-causals obtained
by compression for Tx may di�er from values in Pr(x|π). This occurs when dependency
embedded in Pr(x|π) di�ers from any NAT model. On the other hand, SSnat in line 8 is
based on single-causals from Pr(x|π). Hence, whenever Pr(x|π) di�ers signi�cantly from
any NAT model, SSnat < SStab is expected: resulting in rejecting NAT model for x family.

For complexity of LearnNatBnByBD, denote K = |V |. OneRoundSearch evaluates
O(K2) arcs before one is added, removed, or reversed. It adds at most one arc, and at most
O(K2) arcs may be added. Each arc cannot be repeatedly added, reversed, or deleted, and
also improve Score. Hence, the number of executions of OneRoundSearch is O(K2), and
complexity of LearnNatBnByBD is O(K4).

The NAT-model compression during getBDScore involves a signi�cant cost, whose com-
plexity [7] is left implicit in the above analysis, and must be counted for. Before running
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LearnNatBnByBD, D is pre-processed into a set F of frequencies of unique records. The
complexity of LearnNatBnByBD is linear on |F | and |F | << |D|.

8. Experimental Study

Preliminary experiment is conducted to evaluate the above BD score and structure learn-
ing algorithm with the objective below: Suppose that the data-generating environment can
be expressed as a NAT-modeled BN B1. Then an equivalent tabular BN B2 exists with its
joint probability distribution (JPD) identical to B1. We want to answer the question: Can
our algorithm learn a NAT-modeled BN B3 such that posterior marginals by inference with
B3 approximate those by B2 well, and at the same time inference with B3 is signi�cantly
more e�cient than B2?

We simulated 30 fully NAT-modeled source BNs (B1), each of 80 binary or ternary
variables. Each variable has a maximum of 12 parents. The DAG of each source BN has 5%
extra arcs beyond being singly connected. Hence, each source BN is multiply connected with
a high treewidth (at least 12) and low density. For each source BN, the equivalent tabular
peer BN (B2) is derived, from which a data set of size 5000 is sampled. LearnNatBnByBD
is implemented in Java and run on a desktop with AMD Ryzen 7 5800X 8-Core processor
at 3.8 GHz by single-thread computation, to learn a NAT-modeled BN (B3) from each data
set.

For each pair of peer BN and learned BN, we performed 10 runs of inferences, each with
random observations on 2 to 8 variables (up to 10% of all variables): a total of 600 runs.
Posterior marginal errors of learned BNs, relative to peer BNs, averaged over 10 runs are
shown in Fig. 4 (a). Posterior marginals from learned BNs approximate those from peer
BNs su�ciently well (average error at about 0.025).

Figure 4. (a) Inference errors. (b) Runtime.

As shown in Fig. 4 (b), learned BNs have average inference runtime (msec in log10) of
25 msec, while peer BNs take about 900 msec. Hence, learned BNs are signi�cantly more
e�cient than peer BNs (36 times faster on average).

9. Conclusion

We presented the �rst Bayesian framework for learning structures of BNs with NAT
local models, where NAT models are chosen due to their multiple merits. In particular,
we extended meta-nets for learning tabular BNs to N-meta-nets to enable representation
of NAT-modeled families and single-causal parameters. We showed formally that N-meta-
nets are expressive, and satisfy parameter independence. Using N-meta-nets, we developed
BD scores for learning NAT-modeled BN structures, consisting of likelihood, local structure
prior and global structure prior. The BD scores were shown to be decomposable. A heuristic
algorithm for learning NAT-modeled BN structures with BD scores is presented for search
through the structure space that is signi�cantly more complex than the space in learning
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tabular BNs. Our experiment showed that when the data-generating environment can be
expressed as NAT-modeled BNs, a NAT-modeled BN can be learned whose inference is
su�ciently accurate while being signi�cantly more e�cient than the tabular BN alternative.
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