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Abstract

Research in automated planning typically focuses on the development of new or im-
proved algorithms. Yet, an equally important but often overlooked topic is that of how to
actually implement these algorithms e�ciently. In this study, we are making an attempt
to close this gap in the context of optimal Markov Decision Process (MDP) planning.
Precisely, we present a novel cache-e�cient memory representation of MDPs, which we
call CSR-MDP, that takes advantage of low-level hardware features such as memory hi-
erarchy. We evaluate the speed improvement provided by our memory representation by
comparing the performance of CSR-MDP with the performance obtained by traditional
MDP representation. We show that by using our CSR-MDP memory representation,
existing MDP solvers, including VI, LRTDP and TVI, are able to �nd an optimal policy
an order of magnitude faster.
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1. Introduction

Markov Decision Processes (MDPs) are used to model problems of decision-making under
uncertainty. These problems involve an agent that needs to achieve an objective by executing
optimal (or nearly optimal) actions among a set of applicable ones. In automated planning,
a priori knowledge of a probabilistic model of the actions' e�ects is assumed [1]. MDPs are
also used in (Model-Based) Reinforcement Learning (RL), but in this context, a probabilistic
model is typically assumed to be unknown and must be learned either through real-world
experiments or through simulated experiments (using a given sampling model) [2].

Once an MDP model is known (through a priori knowledge or through learning), one
generally wants to �nd an optimal policy, i.e., a mapping specifying which action should be
executed in each state to achieve an objective with maximum reward (or minimum cost).
In automated planning, dynamic programming algorithms such as Value Iteration (VI) [3]
and Policy Iteration [4], are generally used to �nd such a policy.

Recent progresses made in planning algorithms to solve MDPs faster involve heuristic
search algorithms and trial-based (sampling) algorithms. Labeled Real-Time Dynamic-
Programming (LRTDP) [5] and LAO* [6] are examples of planning algorithms combining
both of these ideas.

An orthogonal way to improve the running time of MDP solvers is the exploitation of
advanced features and architectures of modern CPUs, including cache memory and vector
(Single Instruction Multiple Data, SIMD) instructions (e.g., SSE or AVX instructions on x86
processors). Adapting existing MDP solvers to the use of the aforementioned elements can
lead to substantial performance improvement, as can be seen in many problems studied by
the High-Performance Computing (HPC) research community [7�9]. Over the last few years,
Machine Learning (ML) algorithms have bene�ted from substantial performance gains due
to the consideration of low-level computer architecture elements. For example, specialized
�oating point numbers, such as b�oat16, and specialized SIMD instructions using these
number types allowed a signi�cant speedup in many ML computations [10, 11]. Parallelism,
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achieved either through CPU or GPU, and memory techniques, such as tiling, also helped
many ML algorithms solve much larger classi�cation problems [12�14]. Since the described
techniques allowed considerable performance gains in ML, one can expect that similar ideas
applied to AI planning could lead to MDP solvers capable of tackling e�ciently larger real-
world problems than currently possible.

In this paper, we show that by exploiting the memory hierarchy of modern computers,
state-of-the-art MDP solvers can run an order of magnitude faster. Our main contributions
are as follows: (1) we present a novel cache-e�cient memory representation of MDP, which
we call CSR-MDP, and (2) we evaluate the performance of CSR-MDP on 3 di�erent MDP
domains, comparing it to a traditional MDP representation when using the VI, LRTDP and
Topological Value Iteration (TVI) algorithms.

The remainder of the paper is structured as follows: Sections 2 and 3 respectively present
a quick survey of existing MDP solvers and formally de�ne MDPs and other concepts used in
our study. Section 4 introduces our cache-e�cient MDP memory representation, i.e., CSR-
MDP. We �nally present our empirical evaluation in Section 5, and conclude in Section 6.

2. Related Work

Many MDP solvers are based on the Value Iteration (VI) algorithm [3], or more precisely
on asynchronous variants of VI. In asynchronous VI, MDP states can be backed up in
any order and don't need to be considered the same number of times. One way to take
advantage of this is by assigning a priority to every state and considering them in priority
order. Prioritized Sweeping [15] is an example of an algorithm using this idea. However,
the cost of maintaining the priority queue used to control the states backup order often
cancels the potential speedup. One way to reduce this cost is to divide the states into
partitions and then to assign a priority to these partitions (instead of assigning a priority
to states). The General Prioritized Solvers (GPS) family of algorithms use such a strategy.
GPS algorithms are able to achieve two orders of magnitude speed improvement on many
MDP domains when compared to Prioritized Sweeping [16]. One downside of GPS is that
there is no general method for partitioning the states. Hence, an e�cient partitioning must
be found according to speci�c features of the MDP domain of interest (e.g., if states represent
locations, a k-means-like partitioning can be carried out).

More recently, a general way of partitioning MDP states has been proposed for the Topo-
logical Value Iteration (TVI) algorithm [17]. TVI considers the graphical structure of the
MDP (equivalently, the structure of the graph resulting from the all-outcome determiniza-
tion of the MDP) and uses the Kosaraju algorithm to �nd its strongly connected components
(SCCs). TVI then runs VI on every SCC in reverse topological order. Since, by de�nition,
there are no cycles between SCCs, this order is optimal and every SCCs must be considered
only once [18]. TVI is orders of magnitude faster than state-of-the-art general MDP solvers,
such as LRTDP [5], BRTDP [19] and ILAO* [6], on domains containing many SCCs. Any
MDP domain containing state variables that can only change monotonically (only increase
or only decrease) will have many SCCs and be a good candidate for TVI. For example, board
games like chess have many SCCs since the total number of pieces of a given player can never
grow. One disadvantage of TVI is that SCCs can sometimes be huge (in the worst case, an
MDP includes only one SCC containing every state), and solving these SCCs with VI can
take a while. To alleviate this problem, the Focused Topological Value Iteration (FTVI)
algorithm uses a heuristic search to quickly �nd sub-optimal actions [17]. These actions are
then pruned from the MDP, sometimes allowing more SCCs to be found. However, FTVI
requires lower and upper-bound heuristics and the algorithm performance greatly depends
on their informativeness.
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To the best of our knowledge, only one study considers (CPU) cache performance of
MDP solvers [20]. The proposed algorithm, called Cache-E�cient with Clustering (CEC),
subdivides the SCCs found by the FTVI algorithm into groups of states (or �clusters�) of a
size that �ts the L3 CPU cache memory. The step of FTVI consisting in solving an SCC
using VI is transformed into a procedure that cyclically considers (i.e. solves) every cluster in
the SCC until the entire SCC converges. The authors indicated that their algorithm allowed
them to achieve a speedup factor varying between 2 and 8 compared to FTVI. However,
as we were able to observe by studying the source code of their CEC implementation, the
data structures they used (a linked list of linked lists) are not optimal for memory accesses,
probably causing an overestimate of the realistic achievable performance gains provided by
CEC.

Other works have considered memory caches of hard drives when MDP instances don't
�t totally in the main memory [21], but we don't discuss them here since the problem in
this case is somewhat orthogonal to our research.

3. Problem De�nition

There exist di�erent types of MDP, including Finite-Horizon MDP, In�nite-Horizon MDP
and Stochastic Shortest Path MDP (SSP-MDP) [1]. The �rst two of them can be seen as
special cases of SSP-MDP [18]. In this work, we focus on SSP-MDPs, which we describe
formally in De�nition 1 below.

De�nition 1. A Stochastic Shortest Path MDP (SSP-MDP) is a tuple (S,A, T,C,G),
where:

• S is a �nite set of (discrete) states;
• A is a �nite set of actions;
• T : S ×A× S → [0, 1] is a transition function, where T (s, a, s′) is the probability of
reaching state s′ when applying action a while in state s;

• C : S × A → R+ is a cost function, where C(s, a) gives the cost of applying the
action a while in state s;

• G ⊆ S is the set of goal states (which can be assumed to be sink states).

We generally look for a policy π : S → A, indicating which action should be executed
at each state, such that an execution starting at any state and following the actions given
by π until a goal is reached has a minimal expected cost. The expected cost of following
a policy π when starting at a speci�c state is given by a value function V π : S → R. The
Bellman Optimality Equations (De�nition 2) are a system of equations satis�ed by any
optimal policy.

De�nition 2. The Bellman Optimality Equations are the following:

V (s) =

0, if s ∈ G

min
a∈A

[
C(s, a) +

∑
s′∈S

T (s, a, s′)V (s)
]

otherwise.

The part between square brackets is called the Q-value of a state-action pair:

Q(s, a) = C(s, a) +
∑
s′∈S

T (s, a, s′)V (s).

When an optimal value function V ⋆ is known, an optimal policy π⋆ can be found greedily:

π⋆(s) = argmin
a∈A

Q⋆(s, a).

Most MDP solvers use dynamic programming algorithms like Value Iteration (VI), which
update iteratively an arbitrarily initialized value function until convergence with a given
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Figure 1. CSR-MDP memory representation scheme

precision ϵ. In the worst case, VI needs to do |S| sweeps of the state space, where one
sweep consists in updating the value estimate of every state using the Bellman Optimality
Equations. Hence, the number of state updates (called a backup) is O(|S|2). When the
MDP is acyclic, most of these backups are wasteful, since the MDP can in this situation be
solved using only |S| backups (ordered in reverse topological order), thus allowing one to
�nd an optimal policy in O(|S|) [18].

4. Memory Representation

Research in this domain generally focuses on theoretical advances like heuristic search
(e.g., LRTDP, LAO*, etc.). The implementation details get much less attention. We argue
that the choice of the memory representation used to store an MDP can have a signi�cant
impact on the MDP solver performance, which is sometimes even more important than the
choice of the solver per se (e.g., VI vs. LRTDP). This di�erence in performance is mostly
due to the CPU cache performance (e.g., cache hit rate) of the data structures being used,
which varies greatly among them (e.g., arrays and linked lists have totally di�erent cache
access patterns).

By analyzing the source code of di�erent publicly available MDP implementations, we
could get an idea about the most common data structures used. AI Toolbox, a popular
MDP and POMDP C++ library [22], lets the user choose between dense or sparse matrices
to store MDPs (one 3D matrix of transitions and one 2D matrix for costs/rewards). The
dense matrices almost always take an unreasonable amount of memory, even on small MDPs.
On the other hand, sparse matrices are implemented in such a way that a minimal amount
of memory is wasted, but at the cost of some possible decrease in computational speed.
In the implementations of TVI, FTVI and CEC by their original authors, MDP states
are represented by a linked list of states, each containing a linked list of applicable action
e�ects. Other implementations, such as Blai Bonet's MDP-Engine library1 or Gourmand's
implementation G-Pack [23], use hash tables of structures to store the MDP states. All of
these implementations use a representation that we could classify as an �Array of Structures�
(AoS) memory layout representation (on the opposite to the �Structure of Arrays� memory
layout), and none of them explicitly stores the MDP in a cache-optimal way.

Modern CPUs have multiple levels of cache memory, usually named L1, L2 and L3, where
L1 is the smallest and the fastest cache, and L3 is the slowest but the largest cache. These
cache memories allow the computer to load recently used data without having to wait for
central memory. The smallest amount of data loaded at a time in memory, named the cache

1 https://github.com/bonetblai/mdp-engine

https://github.com/bonetblai/mdp-engine
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line size, is usually 64 bytes on modern CPUs. Access to the fastest level of cache is usually
around 3 orders of magnitude faster than access to central memory.

There are two main ways of taking advantage of cache memory and thus decreasing the
memory access time: (1) data that are often used together can be packed in memory to
ensure that all memory inside loaded cache lines is useful for the current computation; (2)
algorithms can be modi�ed to minimize the amount of memory accesses, e.g., by working
longer with loaded data before loading di�erent data.

In this section, we present a novel memory representation of MDP which, to the best
of our knowledge, has never been described before. This representation is inspired by the
Compressed Sparse Row (CSR) representation of directed graphs [24], known to yield excel-
lent cache performance with minimal memory overhead [25]. We can classify our CSR-MDP
representation as a �Structure of Arrays� (SoA) memory layout representation.

Figure 1 illustrates our MDP memory representation scheme, which we call CSR-MDP.
This representation includes �ve arrays, (S, C,A,N ,P), where:

• [S[i], S[i+ 1][ is the interval of indices of state i's actions;
• C[j] is the cost of executing action j;
• [A[j], A[j + 1][ is the interval of indices of action j's probabilistic e�ects;
• N [k] is the id of the state reached when the e�ect k of an action occurs;
• P[k] is the probability that the e�ect k of an action occurs.

In Figure 1, the red lines under S, A and C symbolize data associated with state i. The
two numbers in the red region in S represent the semi-open interval of indices in A and C
corresponding respectively to state i's actions' e�ects and costs. Similarly, the blue lines
under A, N and P symbolize data associated to action j1. The two numbers in the blue
region in A represent the semi-open interval of indices in N and P corresponding to action
j1's possible outcomes (possible neighbors and respective transition probabilities).

The arrays C and A, and the arrays N and P, can be respectively merged into single
arrays of pairs of variables, but we chose not to do it in our implementation because: (1)
we don't always need to access both variables at the same time (and in such a case, we can
double the amount of useful information in the cache by keeping the arrays separate), and
(2) the eventual use of SIMD instructions in an optimized solver would require (or at least
bene�t from) contiguous actions' cost data or actions' probabilistic e�ects in memory.

Figure 2 shows an example of an SSP-MDP and its associated CSR-MDP representation.
The numbers in cyan represent the cost of each action. Only one action in state 0 and one
action in state 1 are non-deterministic. The numbers in magenta represent the probability
of the outcomes of these actions.
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Figure 2. An example of an MDP and its corresponding CSR-MDP representation

The main advantage of CSR-MDP over other MDP memory representations is that in
CSR-MDP all data are packed together, maximizing therefore the cache e�ciency. Another
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advantage of CSR-MDP is that data are stored homogeneously in separate arrays, making
it easier for the programmer or the compiler to vectorize the code using SIMD instructions.
Memory-wise, CSR-MDP has smaller overhead compared to the existing representations.
For example, with linked lists, a signi�cant part of memory is used to store the pointers
between cells, while with hash tables, memory is wasted by empty buckets. Note that in our
implementation, the elements of every array are stored in 4 bytes, since we only use 4-bytes
integers (in S,A and N ) or 4-bytes �oating point numbers (in C and P).

Suppose we have an MDP M containing n states, where the average number of applicable
actions per state is m and the average number of probabilistic e�ects per action is k. The
total memory (in bytes) necessary to store M entirely in the CSR-MDP data structure can
be assessed as follows:

MemorySize(M) = 4(n+ 1) (S array)

+ 4(nm) (C array)

+ 4(nm+ 1) (A array)

+ 4(nmk) (N array)

+ 4(nmk) (P array)

= 8nm(k + 1) + 4n+ 8. (in bytes)

For example, to store an instance of the Single-Armed Pendulum problem (described in
Section 5, where m = 2 and k = 3) containing n states would require 68n+ 8 bytes.

5. Empirical Evaluation

In this section, we evaluate the performance of the CSR-MDP memory representation.
To do so, we compare the performance of our implementation (which uses CSR-MDP) to the
performance of a baseline implementation. As a baseline, we used the implementation used
for the evaluation in TVI's and CEC's original paper [17, 20]. The memory representation
used in the baseline is an Array of Structures (AoS) representation. More speci�cally, it
consists of a linked-list of pointers to structures representing each state. This baseline
is representative of the public MDP implementations available, which, to the best of our
knowledge, all use an AoS MDP representation.

We compare the CSR-MDP and baseline memory representations by assessing their im-
pact on the performance of the three following algorithms: (1) VI � the standard dynamic
programming algorithm (we use the asynchroneous round-robin variant), (2) LRTDP � a
well-known heuristic search algorithm, and (3) TVI � the Topological Value Iteration algo-
rithm described in Section 2. For LRTDP, we used the admissible and domain-independent
hmin heuristic, �rst described in the original paper introducing LRTDP [5]:

hmin(s) =

0, if s ∈ G.

min
a∈As

[
C(s, a) + min

s′∈succa(s)
V (s′)

]
, otherwise,

where As denotes the set of applicable actions in state s, and succa(s) is the set of successors
when applying action a at state s. The three competing algorithms (VI, LRTDP and TVI)
were implemented in C++ by the authors of this paper and compiled using the GNU g++
compiler (version 11.2, with level 3 optimizations). We did not attempt to vectorize the
code manually using SIMD instructions, but the compiler auto-vectorized some parts of it.
All tests were performed on a PC computer equipped with a 4.2 GHz Intel Core i5-7600K
Processor with 16 GB of RAM memory. For every test domain, we measured the running
time of the three compared algorithms carried out until convergence to an ϵ-optimal value
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function (the value of ϵ was �xed to 10−6 in our study). Every domain size was tested 15
times with randomly generated MDP instances. To minimize random factors, we report the
median values obtained over these 15 MDP instances.

We evaluated the performance of the VI, LRTDP and TVI algorithms on 3 di�erent MDP
domains. The �rst of them is the generic Layered domain described in TVI's paper [17].
This domain is parameterized by four di�erent parameters: n, nl, na and ns, respectively
describing the number of states, the number of layers, the number of applicable actions

per state, and the maximum number of successor states per action (i.e., every action a
can lead to ka di�erent states, where ka is drawn from a uniform integer distribution in
[1, ns]). Transition probabilities are uniformly sampled from possible successors. States in
this domain are evenly divided into nl layers, {1, 2, . . . , nl}. A state in layer i can only have
successor states in layers {i+1, . . . , nl}, which means that MDPs in this layered domain have
at least nl SCCs. The second domain we considered is the Single-Armed Pendulum (SAP)
domain [16]. This domain represents a two-dimensional minimum-time optimal control
problem in which an agent always has two possible actions: apply a positive or a negative
torque to a rotating pendulum. The objective of the agent is to balance the pendulum to
the top. The state space is de�ned by two variables: angle θ and angular velocity ω. Finally,
the last domain we used in our evaluation is a variant of the Wet�oor domain [26]. In this
domain, the state space is a square navigation grid in which cells can be in one of three levels
of wetness: dry, slightly wet or heavily wet. In the grid, cells are independently chosen as
wet with probability p. Among wet cells, a second parameter q controls the probability of
being slightly wet (q) or heavily wet (1− q). The agent starts in a certain position and the
goal is to reach another position with a minimal number of actions. The actions are {Up,
Down, Left, Right}. They are deterministic on dry cells. On wet cells, the actions outcome
is probabilistic and depends on parameters rslightly and rheavy. In our evaluation, we used a
modi�ed Wet�oor domain where instead of having a single square grid, we have many such
grids connected to each other (intuitively, this represents many wet rooms in a house).

Domain VI LRTDP TVI

Layered (var. states) 5.87481 7.91771 4.46547
Layered (var. layers) 6.77031 > 4.07741 > 3.87843

SAP 4.36132 > 1.0539 5.34032
Wet�oor > 15.3342 > 13.812 12.3605

Average > 8.69197 > 2.86112 > 6.6481

Table 1. Average speedup factors obtained by every solver on every domain using the
proposed CSR-MDP data structure when compared to the baseline implementation.
Numbers with the `>' symbol are lower bounds on the true speedup factor.

Table 1 reports the average speedup factors provided by CSR-MDP when compared
to the baseline implementation. We compare the speedups obtained on the three tested
domains with every tested solver, to see if a speci�c solver bene�ts more from the CSR-
MDP representation. Table 2 presents the detailed results obtained on di�erent instances
of the considered Layered, SAP and Wet�oor domains. The �rst four columns report the
characteristics of the considered MDP instances, including the domain name, the number
of states of the generated instance, the number of SCCs (we don't count here the SCC
containing only the goal state) and the size of the largest SCC. The next six columns
present the median running time (in ms) obtained by the three tested algorithms (VI,
LRTDP and TVI) when carried out with the baseline implementation and with our CSR-
MDP implementation. Figures 3, 4, 5 and 6 illustrate the obtained results graphically. The
`b' and `csr' subscripts in the �gures denote respectively the baseline and the CSR-MDP
implementations.
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Characteristics of MDP instances Baseline CSR-MDP
Domain |S| SCC |SCCmax| VI LRTDP TVI VI LRTDP TVI

Layered 100,000 10 10,000 6,253 5,829 2,355 1,051 905 400

Layered 200,000 10 20,000 17,499 16,301 5,828 3,742 3,018 1,323

Layered 300,000 10 30,000 26,655 28,131 9,001 3,243 3,006 1,633

Layered 400,000 10 40,000 40,489 40,160 13,142 6,154 4,491 2,543

Layered 500,000 10 50,000 72,815 68,544 19,343 8,262 7,614 3,447

Layered 600,000 10 60,000 58,511 77,312 20,602 10,135 12,103 4,575

Layered 700,000 10 70,000 68,574 85,359 24,532 14,606 12,093 5,928

Layered 800,000 10 80,000 93,054 122,189 29,821 14,392 14,601 6,466

Layered 900,000 10 90,000 115,157 142,215 35,335 21,385 17,718 8,591

Layered 1,000,000 10 100,000 144,708 158,977 40,554 26,602 18,546 9,997

Layered 1,000,000 1 1,000,000 273,731 - - 41,788 232,539 91,612
Layered 1,000,000 2 500,000 207,160 - 134,678 32,291 93,500 37,682
Layered 1,000,000 4 250,000 120,241 230,598 66,380 28,539 57,884 19,941

Layered 1,000,000 8 125,000 143,112 206,107 45,595 29,266 24,954 12,210

Layered 1,000,000 16 62,500 117,847 150,479 31,583 19,123 12,806 6,898

Layered 1,000,000 32 31,250 136,257 107,789 25,469 15,946 6,814 4,128

Layered 1,000,000 64 15,625 95,319 80,321 18,271 14,543 4,592 2,562

Layered 1,000,000 128 7,813 77,791 84,933 40,361 13,413 11,500 9,637

Layered 1,000,000 256 3,907 63,078 67,585 22,438 8,595 4,391 4,214

Layered 1,000,000 512 1,954 83,238 65,363 19,015 6,417 2,676 2,353

Layered 1,000,000 1,024 977 70,765 63,297 18,698 7,009 3,732 2,630

Layered 1,000,000 2,048 489 54,964 63,966 15,267 6,288 2,559 2,141

Layered 1,000,000 4,096 245 60,675 52,289 15,141 7,824 2,995 2,184

Layered 1,000,000 8,192 123 71,687 59,868 16,050 5,981 2,035 1,997

Layered 1,000,000 16,384 62 74,595 63,480 15,198 6,756 2,043 1,992

SAP 10,000 1 10,000 117 343 121 32 227 12

SAP 40,000 1 40,000 1,155 8,552 1,170 234 4,962 109

SAP 90,000 1 90,000 3,673 42,597 3,735 857 16,184 476

SAP 160,000 1 160,000 7,663 142,882 7,702 1,903 78,565 1,538

SAP 250,000 1 250,000 15,387 - 15,665 3,919 292,439 3,124

SAP 360,000 1 360,000 25,262 - 25,292 6,055 - 4,852

SAP 490,000 1 490,000 39,694 - 39,914 9,591 - 7,425

SAP 640,000 1 640,000 54,786 - 55,188 13,832 - 11,772

SAP 810,000 1 810,000 81,573 - 81,939 18,756 - 15,707

SAP 1,000,000 1 1,000,000 111,414 - 111,861 22,945 - 19,136

Wet�oor 500,000 1 500,000 65,185 212,101 65,968 7,721 10,997 21,756
Wet�oor 500,000 2 250,000 109,979 - 72,191 10,297 9,326 14,988
Wet�oor 500,000 3 166,667 - - 138,184 12,414 17,502 13,514
Wet�oor 500,000 4 125,000 - - 144,481 15,582 22,166 12,711

Wet�oor 500,000 5 100,000 - - 184,969 15,985 20,536 12,116

Wet�oor 500,000 6 83,334 - - 161,854 19,680 28,703 12,075

Wet�oor 500,000 7 71,429 - - 186,367 19,972 24,696 11,400

Wet�oor 500,000 8 62,500 - - 206,437 19,524 22,522 10,845

Wet�oor 500,000 9 55,556 - - 218,317 23,127 33,287 10,790

Wet�oor 500,000 10 50,000 - - 226,503 23,634 27,467 9,676

Table 2. Median running times (in ms) found for every tested domain are indicated.
Fastest time for each domain instance is bolded. The symbol `-' indicates when a solver
could not solve an instance within 5 minutes.

Figure 3 presents the obtained results for the Layered domain when �xing the number
of layers (10) and varying the number of states (from 100k to 1M), whereas Figure 4 shows
the results for this domain when �xing the number of states (1M) and varying the number
of layers (from 1 to 16384). In the �rst case (varying the number of states), we can see
that TVI is able to leverage the 10 layers which allows it to clearly beat VI and LRDTP.
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Figure 6. Running time (in s) for the SAP domain with varying number of states. Both
axes have a logarithmic scale.

The baseline implementations are much slower than the CSR-MDP implementation in this
domain. In the second case (varying the number of layers), we can additionally observe that
LRTDP and TVI become slower at the level of 128 layers, which can be explained by the
fact that with this number of layers, the number of states per layer (and thus the amount
of memory needed to store the complete information on the states in the layer) surpasses
the size of one of the three levels of cache in the CPU. The VI algorithm is not a�ected by
this drawback since it does not considers layers. However, LRTDP is a�ected by it, even
though it does not explicitly considers layers, because the number of layers has an impact
on the search depth attained by LRTDP before it reaches a goal.

For the SAP domain, LRTDP has a lot of di�culty to �nd a solution in reasonable time.
Two reasons can explain this fact: (1) the hmin heuristic is not really informative for this
domain and (2) the minimum number of actions needed to reach a goal in SAP's instances
is relatively high (LRTDP is known to provide better performance when the number of
actions to reach a goal is small). In the baseline implementation, VI and TVI provided
equivalent performance, which was expected since the SAP domain has only one SCC (all
actions are reversible), and TVI basically becomes VI when there is only one SCC in the
domain. Surprisingly, the CSR-MDP implementation of TVI was faster than the CSR-MDP
implementation of VI, even though the computation of the single SCC (using Tarjan's algo-
rithm) should have caused a useless overhead. This can be explained by the fact that states
in the (asynchronous) VI called by TVI are backed-up in the order they were discovered
by Tarjan's algorithm (instead of their original order in the input �le). This yields a much
better order since states are backed-up after their neighboring states, which maximizes the
speed of propagation of the values in the state-space. About 50% less sweeps through the
state-space, on average, were necessary before the value-function converged to a precision ϵ.

Regarding the Wet�oor domain, we can see that as for the Layered domain, TVI was able
to take advantage of the number of SCCs (rooms) in the domain when compared to VI and
LRTDP. However, the baseline implementation had a lot of trouble for this domain which
impacted VI, LRTDP, and even TVI. The loss in performance when the number of rooms
increases is due to the way of storing the SCCs in memory in this implementation. More
precisely, since the states contained in an SCC are not stored contiguously, the increase in
the number of SCCs causes a considerable increase in the number of cache-misses. For this
domain, VI's and LRTDP's performance decreases as the number of rooms increases. In the
case of VI, it can be explained by the fact that when the number of rooms is high, most
backups carried out by VI are useless (they propagate unconverged state-values). In the
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case of LRTDP, it can be explained by the fact that a higher number of rooms generally
corresponds to a larger search depth from the initial state to the goal state in this domain.

6. Conclusion

In this paper, we presented a new way of storing an MDP in memory, called CSR-
MDP, which was inspired by the Compressed Sparse Row (CSR) representation of sparse
graphs. Our memory representation reduces the memory overhead induced by most other
representations, while packing MDP data contiguously in memory. This strategy minimizes
the memory access time when solving MDPs. The results of our experiments conducted
with di�erent probabilistic planning domains indicate that the CSR-MDP representation
provides an average speedup factor (over all tested domains) of 8.6, 2.8 and 6.6, when using
VI, LRTDP and TVI, respectively. Our implementations, including the domains generators,
are freely available online2.

In the future, we plan to further consider and take advantage of the cache hierarchy of
modern CPUs by developing a new MDP solver that decomposes an MDP into smaller sub-
parts which can be considered one at a time, �tting entirely in cache memory. This could
almost completely eliminate the cache misses when solving a large MDP, leading to further
substantial speedups. We also plan on investigating if the proposed representation can be
used in GPU-based implmentations and yield further performance improvements.
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