
The 34th Canadian Conference on Artificial Intelligence

General Deep Reinforcement Learning in NES Games
David Gregory LeBlanc†,*, Greg Lee†

† Acadia University

*143807L@acadiau.ca

Abstract

The techniques involved in general game playing with Artificial Intelligence (AI) have
advanced to meet the challenges of the most popular video game and board game do-
mains. Until recently, the video game domains used as testbeds have been relatively
simple. That is, the most complex console-wide domain that has been solved using Deep
Reinforcement Learning is the Atari domain, which is decades behind modern video
game domains. This work explores a more complex domain (the Nintendo Entertain-
ment System, or NES) and the associated difficulties in developing deep reinforcement
learning agents for it. To understand these difficulties, we trained agents on NES games
with little to no expert knowledge provided to the agents. After developing some un-
derstanding of the challenges of the domain, we suggest areas on which to focus to solve
this domain, work which will hopefully lead the field to solving ever more complex envi-
ronments both real world and theoretical. This paper determines some of the necessary
changes in hyperparameters and reward functions to solve the NES domain compared
to the more popular Atari domain while using game pixel data as the only inputs to the
agents’ neural networks.

Keywords: Machine Learning, Reinforcement Learning, Games, Deep Learning

This article is © 2021 by author(s) as listed above. The article is licensed under a Creative Commons
Attribution (CC BY 4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode),
except where otherwise indicated with respect to particular material included in the article. The article
should be attributed to the author(s) identified above.

1. Introduction

Deep Reinforcement Learning (Deep-RL) is one of many powerful tools in the machine
learning arsenal, capable of training agents with very little user generated data; for many
domains all that is required from the user is an adequately specified reward function. This
generality makes Deep-RL appropriate for tackling domains with highly variable environ-
ments that present state spaces as large as are found in video games; in an average Super
Mario Bros. level the player character may be at any one of 3000 x-positions at any time
within a few thousand timesteps, during which they may take any of 16 actions that can
change the state. These environments are analogous to real world problems because of these
complexities.

Reinforcement learning has been successfully applied in the Atari domain to the extent
that DeepMind’s Agent 57 [1] can outperform humans across all games in its library. The
next natural step is the next generation in video games – the NES. From a hardware per-
spective, NES games support resolutions of 256x240 (up from 160x192 for Atari), roughly 8
times more input combinations, and storage/game sizes of up to 1MB, instead of the 16kB
Atari games could utilise; an approximately 60 times increase of hardware complexity.

Aside from these quantitative differences, many games within the NES domain are far
more complex than those in the Atari domain. This is where video games go beyond simply
requiring twitch reflexes (where computers excel), and move on to requiring critical thinking
skills. This translates to the goals of players moving from easily modelled ideas of getting
the highest scores to more abstract concepts such as finding the end, exploring the game’s
environments, or optimizing any one of the many in game statistics. We define "solving"
an environment or domain as creating an AI agent that consistently achieves superhuman
performance in that environment or domain.

2

The results of Deep-RL are highly dependent on the given reward function; the perfect
learning algorithm combined with an ill-defined reward function never converges to desired
behaviours. In the past (i.e. with Atari games), basing the reward functions on in-game
score was sufficient, given that maximising the score would represent the fulfillment of
player goals. Since most NES game designers eschewed score because of the complexity of
the intended player goals, this metric is no longer helpful. For the purposes of advancing
reinforcement learning, this is a plus as many real world problems similarly lack a descriptor
like score.

Thus, it follows that one of the crucial steps in solving this complex domain lies in de-
termining appropriate reward functions, which is what we do in this paper. Our most
successful agent is capable of completing the first level of Super Mario Bros. within seconds
of a human expert time. This paper also shows how reward functions in the NES domain
must be structured so that they avoid problems of reward farming (undesirable agent be-
haviour that is rewarded) by selecting features from the game that correlate with human
player goals while punishing waiting behaviours with a time penalty. In examining different
styles of reward function, we also show how the -greedy exploration strategy is ineffective
for providing agents with samples of sufficient quality for behavioural convergence.

The rest of this paper is structured as follows: first, we explain the sources of chosen
techniques as well as what new areas are being explored in this work in "Related Work"
(Section 2), followed by "Our Approach" (Section 3). We then show the results of our
experiments across Pong, Arkanoid, Mega Man, and Super Mario Bros. in Section 4. Finally,
we discuss the key contributions of the work and areas for future work in Section 5.

2. Related Work

One of the largest inspirations for this research is the work of Murphy [2], as it explores
the NES domain with success. However, it requires human-expert gameplay as training
data for its algorithm to learn. It also differs in that the trained agents receive the system’s
memory as inputs rather than this work’s focus on pixel-data. It may be worth combining
the Deep-RL techniques here with these ideas in future work.

Agent57 from DeepMind [1] shows how Deep-RL may be used to solve the Atari domain,
which more closely resembles the methods used here in a different domain. That is, Agent57
manages superhuman performance across the Atari library with a variety of reward func-
tions. The principle difference with this work is that we test agents in the NES domain
while Agent57 focuses solely on Atari games.

AlphaStar [3] and OpenAI Five [4] have created superhuman agents for Starcraft II
and Dota 2, respectively. Both of these games are more sophisticated than most of the
NES library in terms of image resolution, possible outputs, and, arguably, goal complexity.
However, both AlphaStar and OpenAI accomplish this performance using expert knowledge
by training their agents against hand-made strategies. In contrast, we are more interested
in using as little expert knowledge as possible with the aim of discovering reward functions
that can apply across large sections of the video game domain.

AlphaGo and AlphaZero, which surpassed human masters in Go and Chess, respectively,
show how AI may be used to solve complex domains. They differ from this work in that they
operate in domains with fewer time steps than the NES domain, as a game of go or chess
has a number of turns on the order of 100. In contrast, a complete playthrough of a shorter
NES game like Super Mario Bros. contains 17000 time steps (5 minutes of gameplay) if
played with world record speed. A more casual playthrough may go on for hours [5]. Many
of these timesteps do not carry as much weight as a single turn in a game of chess, but
instead an agent must be able to carry out one strategy over hundreds or thousands of time
steps in small increments.

3

3. Our Approach

To train NES agents, we use Deep-Q learning, due to its previous success in the field of
game-playing. Deep-Q involves modeling the Q, or state-action value function of the given
environment, picking the action with the best predicted reward at each step. Aside from the
basic implementation, we also include the enhancements of double-Q learning [6] and Pri-
oritised Experience Replay [7] (PER). These have been shown to reduce overestimation and
improve sample efficiency, respectively. Algorithm 1 shows the basic steps of this process.

Algorithm 1 Enhanced Deep-Q Algorithm
Require: Default priority β, batch size N , prioritisation factor η, discount rate γ, target

network update parameter u
1: Initialise neural network [Model] to model Qeval(s, a), accepting environment states.
2: Initialise secondary network [TargetModel] to model Qtarget(s, a)
3: Initialise prioritised experience replay [Memory]
4: for each episode do
5: Initialise environment for state S
6: while S not a terminal state do
7: A← argmax

a
Q(S, a)

8: Take action A, observe R, S’ from environment
9: Store experience in Memory, S, A, R, S’, with priority β

10: Sample batch of size N from Memory
11: for sample in batch do
12: target← reward+ γQtarget(s

′, argmax
a

Qeval(s, a))

13: Update network towards target
14: Priority ← [r + γmaxa′ Qtarget(s

′, a′)−Qeval(s, a) + ϵ]η

15: update priority in Memory
16: end for
17: if u steps have passed since last TargetModel update then
18: Update Qtarget model weights to Qeval weights
19: end if
20: end while
21: end for

The Deep-Q algorithm is modelled by a convolutional neural network (CNN) with the
following architecture, which has been adapted from DeepMind’s original Atari agent archi-
tecture, described in Table 1. [8]. Each of these layers use a ReLU activation function, and
the model uses the Adam optimizer with mean squared error loss. Note that the input layer
is linked to the resolution of the game; this is because we wish to train our agents using
only image data as inputs.

Table 1. An overview of the network architecture

Layer Type Description
Input One input for each pixel in preprocessed image
2D Convolutional 32 filters, 8x8 kernel, stride 4
2D Convolutional 64 filters, 4x4 kernel, stride 2
2D Convolutional 64 filters, 2x2 kernel, stride 1
Flatten Prepare for 1D layers
Dense 512 units
Output One output for each selected button combination

4

To make the image data as learning-friendly as possible, a variety of preprocessing tech-
niques and environmental constraints are implemented. Through OpenAI Gym Retro [9],
NES games are emulated step by step, starting at some predetermined point in the game
past menu navigation so the agent may focus on learning to play the games rather than
learning peripheral skills such as game setup. Typically, the agent will be provided with
a terminal signal for the current episode when it reaches what a human would consider a
fail-state (e.g. "game over", losing a life). A proven technique called frame-skipping[8] is
also introduced just before the emulation level, where we provide the agent with with one
out of each n frames. Increasing the n value results in dividing the state space n times, but
risks losing information necessary to make rational decisions in the game

The pixel data received from this emulation comes in three colour channels (256 x 240
x 3), which we condense to a single greyscale colour channel with a smaller resolution,
by scaling the entire frame by some factor, typically 2 or 3 depending on the experiment.
Furthermore, the value of each pixel after this process is scaled to a value between 0 and
1. All of this helps in reducing the state space available to the agent, which is especially
important given that the state space for any given game from the NES library prohibitively
large due to the free rein. Additionally, we perform these state space reductions to make
room for the principle enchancement to the data: frame-stacking.

In frame-stacking a circular buffer of frames is stored which is fed to the agent, with the
goal of imparting a sense of time to the agent. This buffer stores the past m frames which
have been seen by the agent, with the most recent frame pushing the least recent from the
buffer. Without frame stacking, a Deep-RL agent will fail to converge on an effective strategy
on even the most simple video games such as Atari’s Pong. This also means increasing the
amount of input data m times, where m is the number of frames stacked.

Lastly, and most importantly, we seek to optimize the reward function.. We limit the
reward to the value range [−1.0, 1.0] (large values can produce undesirable behaviour), and
impart some constant penalty (negative reward) per frame such as −0.1 or 0.01 depending
on how sparse the reward signal is otherwise expected to be. This is because with a sparse
reward signal, there is a risk that the time penalty becomes greater than any positive
rewards, resulting in defective agents. We can also safely assign a penalty of −1 whenever
the agent receives a terminal signal, as this usually means that the agent has failed to
complete the game as shown in Section 4.

4. Experiments

4.1. Hyperparameter Selection

Before experimenting with reward functions, we determined hyperparameters through
a mixture of analysis of other experiments and empirical observation. The learning rate,
variables (for the -greedy strategy), and Prioritised Experience Replay hyperparameters
we utilise are similar to those chosen for training agents exclusively in the Atari domain.
The hyperparameters with the largest impact on learning were frame stacking and frame
skipping m and n values, hence both were tested iteratively in Pong, due to its simplicity
among games in the video game domain (it lacks some possible confounding variables found
with agents in the NES domain, such as increased reward variance). Figure 1 shows that
stacking with m = 4 is most effective, as lower values do not converge to as high a reward,
while higher values introduce more noise.

Figure 2 shows that agents trained with a frame skipping n = 3 are the quickest at
converging. This is because higher values skip too high a sample variety for the agent, while
lower value provide the agent with too many similar samples.

5

Figure 1. Results from training agents in Pong for 300 000 steps (reward against
timesteps), varying frame stack m value.

Figure 2. Results from training agents in Pong for 300 000 steps (reward against
timesteps), varying frame skip n value.

4.2. Arkanoid (NES) vs Pong (Atari)

Our approach was first tested on Atari Pong, following DeepMind’s work on Atari. It
follows that one of the first games from the NES library to test Deep-Q is Arkanoid, since
Pong and Arkanoid are games where the player controls a paddle and tries to prevent a ball
from moving past it.Figure 3 shows the visual similarities between the two games.

To keep the comparison as direct as possible, we base the reward function on the score
in Arkanoid, which is improved by destroying blocks at the top of the screen with the
ball. Because the NES has many inherent added difficulties to learning (e.g. the higher
state / input space, goal complexity), we give the Arkanoid agent 5 million learning steps
compared to 300 000 learning steps for Pong. There is room for improvement for agents
(beyond 5 million steps), but training was halted there as returns were diminishing with
further training.

6

Figure 3. Screenshots of Arkanoid (left) and Pong (right).

Figure 4. The agent’s achieved reward per episode across 5 million steps in Arkanoid

Figure 4 shows that the Arkanoid agent’s performance is noisy, even after averaging the
reward across multiple episodes. This is particularly apparent when comparing the results
to the Pong agent shown in Figure 5. The Pong rewards are stable throughout its episodes.
That is, the agent’s in game performance is qualitatively similar enough between episodes
to observe a clear improvement over time. With the Arkanoid agent however, the noise is
such that when observing a single episode, it is unclear whether the achieved reward is close
to the average or some extreme high / low and thus the amount of learning is much more
difficult to discern.

There is also a difference in the overall shape of the agent’s learning curves; the Pong
agent converges to a value close to the maximum score possible after only 80 000 steps,
following a steep increase in achieved reward (6 times the preceding improvement) while
the Arkanoid agent sees only a modest increase (2-3 times preceding improvement). This
80 000 step mark roughly lines up with the end of the exploration phase (-greedy strategy
hits its minimum).

7

Figure 5. The agent’s achieved reward per episode across 300 000 steps in Pong

Thus, the exploration stage for the Pong agent is entirely successful in providing the
agent with sufficient training data to navigate the environment with minimal exploration
from that point on. There is a sharp increase in the Arkanoid agent’s reward around the
same point, but the agent has not solved the environment, achieving only about 10% (see
Table 2) of human performance on the first level alone, thus, the -greedy exploration strategy
is not as effective at finding the global maximum in Arkanoid as it is in Pong.

Table 2. Human and agent performance in Pong and the first level of Arkanoid

Human Agent Best
Pong 21 21
Arkanoid (First Level) 1435 148

Some of the difference in performance between Pong and Arkanoid may be accounted
for by the increase in visual noise presented to the agent; Arkanoid features a patterned
background, flashing life display, and animated enemies which may cause the convolutional
layers in the CNN to not discover the most important visual features such as the ball and
paddle.

4.3. Mega Man (NES)

Mega Man is an example of a game from the NES library where game complexity increases
from previous generations. The player is given a more sophisticated control scheme and must
navigate a level with multiple unique obstacles. Figure 6 shows the overall structure of one
level (the player starts in the bottom left and must make their way to topmost right room),
which demonstrates how a successful player must learn and utilise a number of different
strategies to complete the level.

Unlike Pong and many other Atari games, Mega Man does not progress without appro-
priate player input. So, without appropriate inputs, the agent can fail to trigger anything
in the environment at all. This leads to the question of how to develop a suitable reward
function. Mega Man has a score counter that increments by accomplishing some of goals
surrounding finishing the level.

8

Therefore, basing a reward function on the score and applying a time penalty that may
encourage the agents to seek out the rewards is appropriate. Figure 7 shows the performance
of an agent through 2.2 million learning steps.

Figure 6. A stage in Mega Man

Figure 7. Agent rewards in Mega Man over 2.2 million timesteps.

Not only are the rewards negative from the time penalty, but the agent actually appears
to learn how to reduce this reward from episode to episode. One of the actions that increases
the score counter is defeating the constantly respawning enemies in the game. Unfortunately
for the agent, the reward from this is quite low given that enemies take some time to defeat.
Since enemies are the first accessible score generator for the agent in this particular level,
the agent learns a policy to defeat and respawn the enemies reasonably efficiently.

Fighting the enemies presents some risk to the agent (it can lose the episode from taking
too many hits), and this is what causes the episodes to actually end. By the end of these
training sessions it is clear that this is the only thing the agent will ever accomplish, even
though it is far from the true goal of the game: reaching the end of the level.

9

We describe this brand of defective behaviour as reward farming, which happens when the
reward function does not properly incentivise agents towards reaching the true goal. This
is an illustration of why it is difficult to design reward functions as environments become
more complex, and in the next experiment we can explore intelligent alternatives that result
in more desirable agent behaviours.

4.4. Super Mario Bros. (NES)

Many games in the NES library can be completed by following the principle of ’move to
the right’. This strategy works for most ’sidescroller’ games. For this reason, in Super Mario
Bros., positive reward is granted for scrolling the screen right (accomplished by moving the
player character right) while still penalizing the agent for time taken. Figure 8 shows the
agent’s performance over 5 million steps using a Deep-Q CNN.

Figure 8. Agent rewards in Mario without a time penalty over 5 million steps

There is noise comparable to that of the agent playing Arkanoid, but there is no dip in
achieved reward towards the end of training. Another similarity between the two results
is the two graphs show a decrease in rate of learning towards the end of training (i.e. the
reward curve flattens) despite the distance from the global maximum (which would be found
towards the end of both games).

However, comparing the two agents may be unfair due to the difference in game genre.
As Mega Man is within the same genre as Super Mario Bros., we can directly compare the
efficacy of the two reward functions. Firstly, we see a positive change in reward over time
instead of the negative change shown in Figure 7, which is desirable. Despite the noise,
we still see a more consistent gradient with the Mario agent over the Mega Man agent.
Therefore, we conclude that the Super Mario Bros. agent’s reward function better allows
the agent to learn how to optimise its behaviour. We also do not observe any short-term
reward farming from the Super Mario Bros. agent.

However, there are oddities in the agent’s behaviour that suggests reward farming on a
long-term scale. One of the most prevalent oddities is the agent’s tendency to stop moving
at a particular point in level 1-1, near the end. While the agent eventually moves on with
the level, this may be an indication that it is attempting to run out the in-game clock so
that it may restart the level, bringing it to a state where it can comfortably achieve reward.

10

Figure 9. Agent rewards in Mario with a time penalty of -0.1 per frame over 5 million
steps

Another piece of evidence towards this hypothesis is that in any episode where the agent
reaches the second level, it will quickly run out of lives, potentially because it cannot achieve
reward as effectively as it can in the first level. An alternate explanation to the behavioural
oddities is that the agent is confounded by the differences between the first and second
levels. Figure 10 shows screenshots from the first and second levels before preprocessing.
Note the difference in colour palette and level layout which may be confounding the agent.

Figure 10. Screenshots of the first two Super Mario Bros. levels prior to preprocessing.

In either case, this is a sign that the agent is having difficulties generalising its positive
behaviours across levels in Super Mario Bros. Within the first level, the agent’s behaviour
is competitive with human times on its best attempts. We observed a practised human
time of 27 seconds for the first level, while our agent managed to complete the same level
in 30 seconds. For perspective, a more novice human would complete the level with a time
of 40-60 seconds. In experimenting, we also see the influence of the time penalty, as tests

11

without it result in agents that complete the level less often and with a best time of 213
seconds.

It may be that further tuning of the penalty alone could result in agents that surpass the
human time. Without the time penalty, there are more oddities in the agent, as it tends
to stop at multiple points in the level for extended periods of time. The penalised agent
also lessens the noisiness of the achieved reward; it manages to score a reward variance 37%
lower than the unpenalised agent.

On the attempts that are on pace with human performance, the agent occasionally makes
it halfway through the second level, especially towards the end of the training session. This
suggests that the agent may be capable of completing larger portions of the game if it were
provided with a combination of a longer training time and a more sophisticated neural
network architecture.

One aspect of the agent’s behaviour that differs from typical human behaviour in the game
is that it utilises a very risky strategy; it plays close to many of the hazards in the level
(e.g. jumping close to pits and enemies) while also avoiding any of the various powerups
located in the level. This means that in just a few inputs, the agent is at risk of losing
the game due to its proximity to the hazards without the safety the powerups grant. A
human might pick up these powerups and avoid these obstacles to increase their chances of
making it farther in game. Because the agent is most rewarded for high amounts of short
term rewards, this strategy is reinforced as the agent does not need to slow down to avoid
obstacles and collect powerups. However, because this strategy often places the agent near
failure states, the -greedy exploration strategy occasionally chooses doomed actions that
would be insignificant with a safer gameplay strategy. This may be remedied by instead
adopting a Boltzmann exploration strategy so that the agent could learn that some actions
will never be worth exploring given a dangerous state (for example, the agent would not
halt a jump halfway across a pit). Therefore, -greedy exploration is incompatible with this
style of reward function, but the right scrolling reward function may not be optimal.

The agent’s risky behaviour resembles human expert gameplay, where safe strategies are
ignored in the interest of saving time on each level (which is also reflected in its best level
time). This style would be a poor choice for a human to try on learning the game, so it
may be the case that learning a safer strategy would result in a more well-rounded agent.
Perhaps the best agent would start out using safe strategies and as training progressed, shift
towards learning riskier, but more rewarding, strategies.

5. Conclusion and Future Work

Deep-Q may be suitable for creating agents that compete with humans in the NES domain
with little to no expert knowledge. The chosen reward function for the agents is key to their
success, and some reward functions are applicable across significant portions of the NES
library. In particular, we have found that a scroll-based reward function is effective for
games in the sidescroller genre. NES games typically scroll some small number of pixels at a
time, which in theory could be identified by calculating if the current frame is at least mostly
a translation of the previous frame. This could be done either by taking the previous image
and testing for similarities pixel by pixel or by maintaining a separate machine learning
agent that could recognise scrolling. Combining scrolling recognition with a constant time
penalty also appears to be key to the success of the agents, as without it they engage in
more undesirable behaviours and there is more noise in acquired reward.

-greedy is not suited to the larger environments that the NES library presents for a
number of reasons. Firstly, it does not include any mechanism for risk-avoidance, which,
paired with the agents’ tendency to follow a risky strategy makes for a situation where

12

at many moments the agent can lose the current episode with but a few poor rolls of the
-greedy dice.

A more suitable exploration strategy would learn that some actions are always poor
choices, favouring longer episodes that could reveal larger portions of the environment to
the agents.

The scroll-based reward function achieves higher reward because it models the steps
required to accomplish the games’ goal; reaching the end of every level which is invariably
located to the right of the player’s starting position. It is important that the reward function
is at least principally based on these required steps, as we observe that when proximal goals
(steps that can make the end goal easier to reach) are the primary basis to the reward
function, we obtain agents with reward farming behaviour. However, an agent may benefit
from an auxiliary reward function based on proximal goals as they can shape the agent’s
gameplay strategy into appropriately safe territory. For example, our Super Mario agent
may have been able to proceed farther into the second level if it had been rewarded for
picking up powerups during the first level. This would be distinguished from the primary
reward function in that the amount of reward obtainable would be limited to avoid reward
farming.

Reward functions based on score (when a score counter is present) may be effective for
a smaller subset of games on the NES platform. Agents with these reward functions do
struggle to perform well past the initial sections of a game, therefore we would expect the
agents performance to be best in games with a short length. This would include many sports
games within the NES catalogue, as they often feature a small number of unique screens
and sprites (e.g. Tennis [NES]). Note that score in these games does not simply follow the
intermediate goals of the game, it is indeed the only goal of the games.

To achieve superhuman performance for the entirety of lengthier games such as Super
Mario, the agents require some adjustments. This would include training for extended
periods of time beyond 5 million learning steps, as well as more sophisticated neural network
architectures. We also see that additional work may be necessary for enabling agents to
generalise their knowledge across different areas within the same game, shown by the agent
having difficulty in the second level of Super Mario after near human performance in the
first level.

References

[1] Deepmind. Agent57: Outperforming the Human Atari Benchmark. 2020. url: https://deepmind.
com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark.

[2] T. Murphy VII. “The First Level of Super Mario Bros. is Easy with Lexicographic Orderings
and Time Travel ...after that it gets a little tricky”. In: Jan. 2013.

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R.
Powell, T. Ewalds, P. Georgiev, and et al. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. 2019. url: https://www.nature.com/articles/s41586-019-1724-
z#citeas.

[4] OpenAI et al. “Dota 2 with Large Scale Deep Reinforcement Learning”. In: (2019). arXiv:
1912.06680 [cs.LG].

[5] How long is Super Mario Bros.? url: https://howlongtobeat.com/game.php?id=9371.
[6] H. van Hasselt, A. Guez, and D. Silver. “Deep Reinforcement Learning with Double Q-

learning”. In: CoRR abs/1509.06461 (2015). arXiv: 1509.06461. url: http://arxiv.org/
abs/1509.06461.

[7] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized Experience Replay. 2016. arXiv:
1511.05952 [cs.LG].

[8] D. Technologies. Playing Atari with Deep Reinforcement Learning. 2013. url: https : / /
deepmind.com/research/publications/playing-atari-deep-reinforcement-learning.

[9] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman. “Gotta Learn Fast: A New Bench-
mark for Generalization in RL”. In: arXiv preprint arXiv:1804.03720 (2018).

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark
https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark
https://www.nature.com/articles/s41586-019-1724-z#citeas
https://www.nature.com/articles/s41586-019-1724-z#citeas
https://arxiv.org/abs/1912.06680
https://howlongtobeat.com/game.php?id=9371
https://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.05952
https://deepmind.com/research/publications/playing-atari-deep-reinforcement-learning
https://deepmind.com/research/publications/playing-atari-deep-reinforcement-learning

	1. Introduction
	2. Related Work
	3. Our Approach
	4. Experiments
	4.1. Hyperparameter Selection
	4.2. Arkanoid (NES) vs Pong (Atari)
	4.3. Mega Man (NES)
	4.4. Super Mario Bros. (NES)

	5. Conclusion and Future Work
	References
	References

