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Abstract

The Connected Multi-Agent Path Finding (CMAPF) problem asks for a plan to
move a group of agents in a graph while respecting a connectivity constraint. We study
a generalization of CMAPF in which the graph is not entirely known in advance, but is
discovered by the agents during their mission. We present a framework introducing this
notion and study the problem of searching for a strategy to reach a configuration in this
setting. We prove the problem to be PSPACE-complete when requiring all agents to be
connected at all times, and NEXPTIME-complete in the decentralized case, regardless
of whether we consider a bound on the length of the execution.

Keywords: multi-agent path finding, multi-agent planning, connectivity, imperfect

knowledge, decentralized planning

1. Introduction

The coordination of mobile agents is at the heart of many real world problems such as
traffic control [1], robotics [2, 3], aviation [4] and more [5, 6]. Some of these problems have
multiple aspects which make them complex: (1) Some systems are multi-agent, that is, the
behaviors of agents influence others’ and these influences must be taken into consideration
when computing missions; this can be due for instance, to collisions [7], sensor interfer-
ences [8, 9] etc.; (2) Some missions must ensure connectivity, that is, ensure periodic or
constant connection to a station/agent to share acquired information [10]; (3) The environ-
ment may be only partially known, and the agents may discover it during the mission [11,
12]. Several works have considered problems containing these three aspects. For instance,
several algorithmic approaches have been investigated to solve the coordination of multi-
robot exploration [13-15]. Our objective in this paper is to present a framework to study
the theoretical complexity of planning problems with respect to these three aspects.

The theoretical complexity of some related problems have been studied in the literature.
Multi-Agent Path Finding (MAPF) is an important framework introduced to study collision-
free navigation of agents in warehouses (see [7, 16]). This problem was intensively studied
and gave rise to a popular algorithm known as Conflict-Based Search (CBS) [17]. An
extension of MAPF with connectivity constraints, called Connected MAPF (CMAPF), was
studied as well [18]. The complexity of CMAPF and algorithmic solutions were studied
in [19, 20]. However, CMAPF only addresses the multi-agent and connectivity aspects,
and not the partial knowledge of the environment. The latter aspect is considered in the
Canadian Traveler Problem (CTP), which is a well-known problem to study the navigation
of an agent in a partially known graph [21]. While the initial framework was for a single
agent, CTP has been extended to multiple agents in the settings of packet routing [22], multi-
robot exploration [23] and more [24]. While a notion of communication was considered in
[25, 26], it is limited to settings where all agents can receive information at all times or
only designated agents can send information. In contrast, we are interested in studying the
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setting where agents’ ability to communicate depends on their positions in the graph, and
in establishing theoretical complexity results of resulting problems.

In this paper, we study the theoretical complexity of generating plans for a group of agents
to reach a given target configuration. More precisely, we analyze the impact of enforcing or
ignoring: (A) connectivity; (B) collision; (C) a bound on the length of the execution. For
(A), we consider either fully-connected strategies, requiring that the agents remain connected
at all times during the mission, or a decentralized strategy, allowing agents to disconnect
and reconnect. (B) In some applications, collisions can be handled by a local collision
avoidance system [18], and one can thus abstract away and ignore collisions in graph-based
planning algorithms. (C) By providing a bound on the execution length, we can study the
complexity of the decision problem associated to the optimization problem. Our results are
summarized in Table 1. Interestingly, The PSPACE algorithm for the connected problem
with a bounded execution is subtle and relies on a variant of the Savitch’s theorem [27]
we present here. Additionally, the PSPACE-completeness holds even in the case in which
agents can always communicate, thus the hardness of the problem already comes from
the incomplete knowledge of the movement graph. For the decentralized case, we prove the
NEXPTIME-hardness in the bounded and unbounded cases by two separate reductions from
the True Dependency Quantified Boolean Formula problem (TDQBF) [28], thus showing
that the problem becomes significantly harder in this case.

Let us compare our results with known complexity results. In the fully known environ-
ment, the CMAPF problem is PSPACE-complete in the connected and unbounded case [19],
while it is NP-complete in the bounded case (with the bound given in unary) [18]. Thus,
the partial knowledge of the environment does not render the problem harder in terms of
complexity. In contrast, recall that in MAPF (without connectivity), one can check the ex-
istence of a solution in polynomial time [29], while the bounded problem is NP-hard [30], so
the hardness is due to connectivity constraints. Some algorithms were presented for CMAPF
in [19] that can scale up to about ten agents. Since both problems are similar and belong to
PSPACE, one can hope that these approaches can be extended to the partial knowledge case.
On the other hand, our results show that the complexity of the decentralized case is signif-
icantly higher. While some tools and algorithms are available for Decentralized POMDPs,
which are in the same complexity class, the scalability is limited and the development of
efficient algorithms for this case seems more challenging (see [31] for a survey).

Some proofs are omitted due to space constraints; they are provided in the long ver-
sion [32].
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2. Preliminaries

Connected MAPF. We consider a setting where agents move on a graph, with the ver-
tices/nodes being their possible locations and the movement edges defining how they can
move. In addition, communication edges define how the agents can communicate. The
graphs we consider thus have two types of edges and are called topological graphs.

Definition 1. A topological graph is a tuple G = (V, E™, E¢), with V a finite non-empty
set of vertices, E™ CV x V a set of movement edges and E€ CV x V a set of undirected
communication edges.



A movement edge (u,v) is said to be undirected if (u,v), (v,u) € E™. Figure 1 gives an
example of a topological graph. For instance, an agent can go from 1 to 3 in one step. Two
agents at vertices 1 and 5 can communicate, but two agents at 1 and 4 cannot.

We suppose that each vertex has a self-loop movement edge and a self-loop communication
edge. This respectively represents the ability of an agent to stay at their location and to
communicate with a nearby agent (i.e. at the same location/vertex).

Definition 2. A configuration is a tuple ¢ = {c1,...,cn) where ¢; is the vertex of agent i.

We write ¢ — ¢’ when (¢;,c}) € E™ for all 1 < i < n. This means that each agent i can
move from their vertex ¢; in ¢ to their vertex ¢} in ¢’ in one step.

Definition 3 (Execution). An execution 7 is a sequence of configurations (w[0], w[1],..., =[€])
such that ©[t] — w[t + 1] for allt € {0,...,£ —1}.

We denote the length of 7 by |r|, and write «[0..t — 1] to denote the sub-execution
(m0], w[1],..., [t — 1]) of . Moreover, last(w) denotes the last configuration of =.

We say that a configuration c is connected iff the subgraph of the vertices occupied by
the agents form a connected graph for relation E°, i.e. the graph (V,, E¢N (V,xV,)) is con-
nected with V, = {¢1,...,¢,}. An execution is said to be connected iff all its configurations
are connected. The Connected Multi-Agent Path Finding problem consists in finding a con-
nected execution for the agents from a given initial configuration to a target configuration.
We summarize below the known complexity results for the CMAPF problem.

Theorem 1 ([18]). The problem of deciding whether, in a given instance (G, c*,ct, k) where
k is unary, there is a connected execution from c® to ¢t of length at most k is NP-complete.

Theorem 2 ([19]). The problem of deciding whether for a given instance (G,c*,c',00),
there exists a connected execution from c® to ¢t is PSPACE-complete.

We do not consider collision constraints which would forbid agents from sharing the same

vertex. For CMAPF with perfect knowledge, executions are not harder to compute with or
without collision constraints [19, 20]. The same holds in our case, and we discuss, in the
Section 6, how to incorporate these constraints in our setting.
Dependency Quantified Boolean Formula. A Dependency QBF (DQBF) is a formula
in which dependencies of existential variables over universal variables are explicitly speci-
fied. A DQBEF is of the form Vyi,...,y,321(Og,) ... 32,(04, ) 9, where each O, is, the
dependency set, a subset of universally quantified variables, and 1 is a Boolean formula in
CNF over x1,...,%n,Y1,---,Yn- It is worth noting that a QBF can be seen as a DQBF with
Oz, €04, C...C Oy,

The True DQBF (TDQBF) is the problem of deciding whether a given DQBF holds.
Formally, a DQBF ¢ holds iff there exists a collection of Skolem functions A = (A,, :
{0,1}9#i — {0,1});=1.., such that replacing each existential variable z; by a Boolean for-
mula representing A, turns 1 into a tautology. TDQBF is NEXPTIME-complete [28], and
will be used to prove NEXPTIME lower bounds in Section 5.

3. Our framework
3.1. Modeling Imperfect Information

To formalize CMAPF in the imperfect information setting, let us show how to represent
the initial knowledge of the agents, and how the information they have evolves during the
execution. Agents initially know the exact set of vertices, but only have a lower and an upper
approximation of the actual graph: they know that some (communication or movement)
edges are certain (they must be present), while some are uncertain (they may be absent).
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Definition 4 (Initial Knowledge). The initial knowledge is modeled by a pair of topological
graphs (G1,Gs), with the graph G1 = (V, E{*, EX) a lower bound, and G2 = (V, EJ", ES) an
upper bound on the knowledge about the actual graph with ET* C EJ* and Ef C ES.

The agents initially know G; and G while the actual graph G = (V, E™, E°) is initially
unknown to them. They only know that Ef* C E™ C E* and Ef C E¢ C ES, written as
G1 C G C Gs. The perfect information case is captured by G; = Ga2(= G).

A movement (resp. communication) edge is said to be certain (i.e. sure to be present)
if it is in E7* (resp. EY); it is said uncertain (i.e. can be absent) if it is in EZ* \ E7" (resp.
ES\ EY). We assume that the communication edges of the actual graph are undirected, so
for all (u,v) € ES\ EY, either (u,v), (v,u) € E, or (u,v), (v,u) & E°.

We say that an edge (u, v) is an uncertain undirected movement edge when (u,v), (v,u) €
ES*\E}*. The environment can leave both edges (u, v), (v, u), remove both edges (u, v), (v, u),
but also remove (u,v) and leave (v, u), or remove (v,u) and leave (u,v). That is, the move-
ments edges of the actual graph are not necessarily undirected.

Example 1. Figure 2 depicts an initial knowledge (G1,G2). The area is divided in two zones
connected by two bridges, represented by the edges (s2,s4) and (s3, s5), with an uncertainty
on which bridge is open and on the communication between s1 and sy4.

A strategy o; for agent i tells where to go next after a given execution 7. Formally:

Definition 5. A strategy o; for agent i maps any execution w to a vertex such that
(v,04(m)) € E™ where v is the vertex at which agent i is in the last configuration of .

A joint strategy o is a tuple (o1,...,0,) where o; is a strategy for agent i. The outcome
of a joint strategy o starting from configuration ¢*® is the execution 7 defined by induction
as follows: 7[0] is ¢®, and for ¢ > 1, w[t] is the configuration in which agent 7 is at vertex
o;(m[0..t — 1]).

In the context of imperfect information, the behaviors of the agents only depend on their
observations, as in imperfect information games as in [33]. The strategies, as defined above,
do not necessarily take observations of the agents into account. We will now formalize
observations and uniform strategies, that is, those respecting the observations of the agents.

In our setting, at any time, an agent observes all movement edges adjacent (both in- and
out-coming) to the vertex v it occupies. Moreover, they observe the presence or absence of
a communication edge between v and v’ if v’ is occupied by another agent with which there
is a direct or indirect communication (via other agents). Intuitively, during an execution,
at each step, each agent updates their knowledge about the graph with these observations
they receive. Moreover, they share all their knowledge with all agents with which they are
connected at each step.

The observation of adjacent movement edges has been a recurrent practice in theoretical
works [21, 34] as well as robotics [35, 36], and our formalism is inspired from these works.

The knowledge of an agent at any time corresponds intuitively to a pair of graphs as in
Definition 4. For agent i and execution 7, let us denote by k;(7)¢ the knowledge of agent i



about the graph after observing the execution 7 in actual graph G. Given such knowl-
edge K = k;(m)%, the agent can deduce an under-approximation and an over-approximation

of the actual graph; let us denote these by GE and 5K respectively. In particular, if K is

the knowledge the agents have initially, then G = G4 and éK = (G3. We present a repre-
sentation of the knowledge using predicates in the appendix where a detailed formalization
of k;(7)¥ can be found.

In the rest of the paper, we assume all considered strategies to be uniform, that is, they
comply with the knowledge of the agents: the strategies prescribe the same move to all
executions that are indistinguishable with the agent’s observations. Formally, if |7| = |7’
and k;(m)¢ = k;(7")%, then o;(7) = oy(7').

3.2. Decision Problems

We consider the decision problem of reaching a configuration ¢! from a configuration c*
in less than k steps, using uniform strategies. For two configurations c*,cf, let us call a
topological graph G (c?, ¢t)-admissible if there is an execution from ¢® to ¢!, which is not
necessarily connected.

Definition 6. We say that an instance (G, Ga,c®,c', k) is positive if there exists a joint
strategy o such that in all (c%, ct)-admissible graphs G satisfying G1 C G C Gs, the outcome
of o starting in c* ends in c* in less than k steps.

Observe that the above problem requires that a strategy ensures the reachability of the
target configuration only for graphs that are (c?, ct)-admissible and compatible with the
initial knowledge. In fact, intuitively, we would like the strategy to work under all possible
graphs G with G; C G C G,. However, requiring a strategy to ensure reachability in a non-
admissible graph does not make sense, since even a strategy with full information would fail.
We thus require the strategies to make their best efforts, that is, to ensure the objective
unless it is physically impossible.

Example 2. Consider the example of Figure 2. If both bridges (i.e. movement edges (s2, S4)
and (ss, s5)) are absent in the actual graph, the graph is not (s1, se)-admissible and there
cannot be a strategy ensuring reachability. The admissible graphs contain either (sa,S4),
or (83,85), or possibly both. Note that, this instance is negative for k < 6 (that is, it
does not admit a solution). Indeed, consider a strategy that moves the agent, for instance,
to sa. In the graph where (sa,84) is absent, the agent would need to come back to s1 and
take the alternative path, which requires an execution of total length 6; and the situation is
symmetric if the first move is towards s3. The instance is nonetheless positive for k > 6
with the described strategy. However, if the edges (sa2,$1) and (s3, 1) were not present, then
the instance would be negative. In fact, once the agent moves to sy or sz, they get stuck if
the graph only contains the other bridge.

We now define the connected version of Definition 6. For two configurations c*, ¢!, we say

that a topological graph G is (c®, ¢t)-c-admissible if there is a connected execution from c*
to ¢t. We will often omit the pair of configurations which will be clear from the context,
and write simply admissible or c-admissible.

Definition 7. We say that an instance (G1, Ga,c®,ct, k) is c-positive if there exists a joint
strategy o such that in all (c*,c')-c-admissible graphs G satisfying G1 C G C Ga, the
outcome of o starting in c® is connected and ends in ct in less than k steps.

In the connected case, agents cannot visit a disconnected configuration. Hence, the
considered strategies only visit configurations that are certainly connected. Observe that
agents can make observations about the presence or absence of communication edges while
being connected and use this information later.



Example 3. Let us illustrate the above property on the example of Figure 8. Assume there
are two agents, the starting and goal configurations are c¢* = (s1,86) and c' = (ss5,87),
and the only uncertainty is about the movement edges (s3,ss) and (s4,s5). Here, Agent 2
could immediately move to her target s7; however, she could also cooperate with Agent 1 and
lower the total completion time. Indeed, from their start configuration (s1, sg), the agents
first move to (sa,s4) where Agent 2 observes whether (s4, s5) is present. Assume the edge
is present. Then, they follow the sequence (s4, sg) - (S5, 87); and otherwise (ss, sg) - (S5, $7)-
Thus, in order to minimize the length of the execution, the agents do not always take their
shortest paths but might help other agents by obtaining information about the graph.

Consider now the same example in which the communication edge (ss, sg) is uncertain.
If this edge is absent then Agent 2 cannot help Agent 1 achieve the target faster since if the
former moves to s4 and (s4,S5) is absent, then, in order to maintain connectivity, the next
configurations should be (s4,sg) « (82, S7) - (83,57) - (S5, 87). An execution of the same size is
obtained when Agent 2 mowves to sy in the first step.

For both Definitions 6 and 7 above, let us call a joint strategy a witness if it witnesses
the fact that the given instance is positive, and respectively, c-positive.

We instantiate the Connected MAPF problem in four different settings. The four fol-
lowing decision problems are defined depending on whether we consider the connectivity
requirement and whether the bound is finite. Note that the bounded problems are the
decision problems associated to the optimization problems.

Bounded Decentralized Reachability. Is given Unbounded Decentralized Reachability. Is
(G1,Ga,c*, ct k), with k < oo, positive? given (G, Gy, c®, ¢!, 00) positive?

Bounded Connected Reachability. Is given Unbounded Connected Reachability. Given
(G1,Ga,c*, ct k), with k < oo, c-positive? (G1,Ga,c%, ct, 00) c-positive?

As we will see, the encoding of the integer k& does not change the overall complexity.
Lower bounds are all obtained directly for the unary encoding; the lower bounds for the
binary encoding follows. Concerning the upper bounds, we explain for each case how to
design an algorithm with k£ encoded in binary.

4. Connected Reachability

We first address the case where agents must be connected at each step of the execution.
In this case, agents share their knowledge at all times and thus the group of agents can be
considered as a single agent playing against the environment.

4.1. Unbounded Case

We first focus on the existence of an unbounded connected strategy. Interestingly, we
show that verifying the existence of a connected strategy in a partially known environment
is not harder than in a perfectly known environment.

Theorem 3. The unbounded connected reachability problem is PSPACE-complete.

4.2. Bounded Case

We now study the existence of a bounded connected strategy. We show that this prob-
lem is PSPACE-complete even when the communication graph is complete. Please find in
supplementary material detailed proofs of the Lemmas 1, 2 and Theorem 5.

Theorem 4. The bounded connected reachability problem is in PSPACE when the bound is
given in binary.



Proof. Let us first prove the upper bound when k is given in unary. As APTIME = PSPACE
[37], we give an alternating algorithm that runs in polynomial time, as follows. At each step,
the existential player chooses the next connected configuration to move the agents; and the
universal player chooses the information about the newly discovered edges. After k steps
the algorithm accepts if the target configuration is reached, or the revealed edges mean that
the graph is not c-admissible. The number of steps is bounded by k, which is polynomial,
thus the algorithm runs in polynomial time.

There is one subtlety to prove the correctness. The alternating algorithm actually cor-
responds to a slight variant of our setting which can be seen as a game. In our setting,
the environment chooses a graph G with G; C G C G, at the beginning, and the agents
discover the graph G as they move. In contrast, in the alternating algorithm, the universal
player reveals the graph step by step; therefore the environment might adapt the graph to
the moves of the existential player.

Lemma 1. The alternating algorithm is correct.

When £k is binary, the previous algorithm does not run in polynomial time. However,
observe that the number of alternations can be bounded by a polynomial because there is
only a polynomial number of steps in which the universal players reveal new information to
the coalition of agents. In fact, the universal player is only useful when some agent is at a
vertex that has not been seen before, and this can only happen a linear number of times.
Furthermore, the previous algorithm runs in polynomial space.

When £ is binary, our problem is in STA(poly(n), *, poly(n)) where STA(s(n), t(n),a(n))
is the set of problems decided in space O(s(n)), time O(t(n)) with O(a(n))) alternations.
Our problem is in PSPACE thanks to the generalization of Savitch’s theorem we prove:

Lemma 2. STA(poly(n), *, poly(n)) C PSPACE.

Intuitively, this lemma is proved by guessing the computations between each universal
choice by a PSPACE oracle, which yields an overall PSPACE algorithm. O

Theorem 5. The bounded connected reachability problem with complete connectivity is
PSPACE-hard.

Our reduction actually builds an undirected movement graph. Thus, PSPACE-hardness
holds already for undirected movement graphs. Note that in our current setting, pairs of
uncertain edges of the form (u,v) and (v, u) are treated separately, but the lower bound
proof still holds when they are seen as one.

5. Decentralized Reachability

We now tackle the case where agents are allowed to be disconnected; at each configuration,
they share their knowledge with all agents to which they are connected. This case is harder
because agents no longer follow a centralized strategy and they must cooperate to exchange
information at the right moment to reach their targets.

5.1. Unbounded Case
Theorem 6. The unbounded decentralized reachability problem is NEXPTIME-complete.

Proof Sketch. For the upper bound, an NEXPTIME algorithm consists in guessing uniform
strategies for all agents and checking whether the joint strategy is a witness. Such a strategy
has exponential size since it is a function of the sets of knowledge of the agents and the
current vertex. One can enumerate all graphs G between G; and G5, and execute the joint
strategy on G to check that it ensures the reachability of the target. Moreover, the executions
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(a) Gadget for variable z. Both edges (v., T.) (b) Gadget for the observation O of universal
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(c) Clause gadget.
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v~ Certain communication edge (T=2,vi) € ES when z appears in v;
—?>  Uncertain movement edge (Lz,vi) € E$ when —z appears in 7;
<Zv>b Certain (resp. uncertain) movement edge if z (Tz,vy) € BY, (Lz,v4) € Ef

3z is existential (resp. universal)

Figure 4. Gadgets in the reduction from DQBF to unbounded decentralized reachability.

to be checked have at most exponential length. In fact, executions can be seen as paths in a
meta-graph where vertices are configurations augmented with the sets of knowledge of the
agents. This meta-graph is of exponential size, so it is sufficient to consider executions of
exponential length. The overall non-deterministic algorithm is thus in exponential time.

The lower bound is shown by reduction from TDQBF. Given a DQBF
© = Yyi,...,yn3r1(0z,) ... 32, (0y,) ¥, we build an instance (Gi,Ga,c%, ¢t k) of un-
bounded decentralized reachability. We denote by 1, ...,V the clauses in .

The graph GG; and G4 as follows. For each variable z, we create the gadget depicted in
Figure 4a.

We create the observation gadget for all existential variables x and for all (universal)
variables y € O,, depicted in Figure 4b. For convenience, we write O for the pair (z,y)
corresponding to observation of y by .

Finally, we create the clause gadget, depicted in Figure 4c. A vertex ~y; certainly commu-
nicates with T, iff z € 74, and with L, iff -z € ;. Moreover, the vertex v, communicates
with all T, and L, for all variables z.

We define the initial and target configurations as ¢® = (S,, S84y, SymsSz1s- -1 Sz
SyisevesSynsSOry---1504), and ' = (to, oy ooyt stars ooy ta s ooty Oy - O )

We give some intuitions about the reduction; the full proof is in the supplementary
material. Assuming the DQBF ¢ holds, one can build a witness strategy as follows. The
agents starting at a universal s, are forced to follow a path not deleted by the environment,
which determines the value of z. The agents starting at so can observe the valuation of their
respective universal variables (by visiting v, ), and then inform their respective existential
variables thanks to the communication edge between vo and v,. Thus, agents starting at an
existential s, are aware of the values of all variables in O, and choose an appropriate value
so as to satisfy . The agents starting at s; idle at ~; at step 3. At this point, the agent
that starts s, also idles at v.,, and all agents that start s, are at T, or L,. Thanks to the
communication edges, and because ¢ is true, each v; communicates with at least some T,



or 1., thus also with the agent at v.,. Therefore, the latter agent knows about all available
edges in the clause gadget and can successfully go to t,.
|

5.2. Bounded Case

In the bounded case, the problem is NEXPTIME-complete independently of the encoding
of the bound. Moreover, the hardness holds even for undirected graphs.

Theorem 7. The bounded decentralized reachability problem is NEXPTIME-complete.
NEXPTIME-hardness holds for undirected graphs.

6. Discussion

Additional Results. We present results obtained by a simple observation/modification.

Unbounded Reachability and Undirected Graphs. Both the unbounded connected and
unbounded decentralized reachability become trivial on undirected graphs. This is because
we only require reachability for (c-)admissible graphs. In the decentralized case, each agent
can run a DFS independently, and eventually reach their targets in at most 2|V| steps, and
a similar search can be done by the set of agents in the connected case.

Base Station. Several works consider a designated base vertex to which all agents must
stay connected during the execution [19, 20, 38]. This concept is only relevant in the con-
nected case. Our results also hold with this additional constraint. In fact, the lower bound
of Theorem 3 follows from [19], which proves the bound also with a base. In Theorem 5, we
can add the base vertex as an isolated vertex so that the reduction is still valid.

Collisions. We did not require the paths to be collision-free in the results presented in
this paper. However, this property is already ensured by our proofs or can be obtained by
simple modifications. The lower bound proof of Theorem 3 relies on Theorem 2 from [19]
which holds with collision constraints as well, so this is also true for our case. The proof of
Theorem 5 does not generate collision-free paths as the groups of occurrence agents start
and finish at the same location and follow almost the same path. This proof can be adapted
to prevent collisions by delaying each occurrence agent by 3 steps behind one another.
This can be achieved easily by extending the movement paths and shifting the starting
location and target location of an agent up by 3 vertices behind the previous agent. The
proof of lower bound of Theorem 6 features a construction ensuring a collision-free strategy.
Indeed, the observations agents only need to take turns to visit the universal variables.
Thus, the result holds with collision constraints as well. The algorithms of Theorem 3, 5,
and 7 can be adapted by restricting all considered configurations to collision-free ones; while
c-admissibility of a graph with collision constraints can be checked using Theorem 2.

Graph Classes. The MAPF and CMAPF problems have been studied for different classes
of graphs (planar, grid, ...). The proof of lower bound in Theorem 3 relies on the proof of
unbounded reachability done in [20], thus the result of PSPACE-hardness on planar graphs
also carries over to our problem. Planar QBF is known to be PSPACE-complete [39], and
the construction of Theorem 5 is such that when applied to a planar QBF, the resulting
graph is planar. Our PSPACE-completeness result thus holds on planar graphs.

Related Work. Different definitions of robust plans [40-42] have been studied. A k-robust
plan guarantees the reachability of the target in the events of at most k delays. A p-robust
plan executes without a conflict with probability at least p. Our framework does not consider
delayed agents but focus on synchronous executions with imperfect knowledge of the area.

The problem of MAPF with a dynamic environment has multiple formulations. The Ad-
versarial Cooperative Path-Finding [43] considers that the obstacles are agents which reason
to prevent the cooperation to reach its goal. [44] considered the problem where the dynamics
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of the environment is predictable. Additionally, when obstacles have unknown dynamics,
one can estimate their movements and plan to minimize the probability of a collision [45],
or predict their movements [46] and plan online the movement of the agents [47]. In our
setting, the environment is static, thus, all observations are fixed.

MAPF with Uncertainty (MAPFU) asks for a plan which guarantees that mishaps, local-
ization and sensing errors do not impact the proper execution of the plan. This problem can
be solved by temporal logic [48], POMDPs [49], replanning [50-52], interaction regions [1,
53], and belief space planning [54-56]. Nebel et al. [57] studied the MAPF problem with an
uncertainty on the destination of the agents and lack of communication. The asynchronous
movement of the agents, studied in those papers, cannot be expressed in our framework as
we require the agent to follow some universal clock to execute their plan.

Perspectives. We proposed a setting for CMAPF in the imperfect case and studied the
theoretical complexity of the reachability problem. The first natural question is to find
classes of graphs (e.g. grid graphs) on which the reachability problem is easier to solve, as it
was done for MAPF in [58, 59], and CMAPF in [20]. Another possible direction is to study
the coverage of all vertices [20]. An alternative way to handle non-admissible graphs is to
require that agents return to their starting configuration if the graph is discovered not to be
admissible. We believe that such variants should be as hard as reachability. Furthermore,
there are several possible generalizations that could be considered by introducing dynamic
environments (instead of static), faulty sensing of agents, robustness, uncertainty, etc.
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