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Abstract
Many incoming data chunks are being produced each day continuously at high speed

with soaring dimensionality, and in most cases, these chunks are unlabeled. Our study
combines incremental learning with self-labeling to deal with these incoming data chunks.
We first search for the best data dimensionality reduction algorithm, leading to the op-
timal low-dimensional space for all the incoming chunks. The incremental classifier is
then adapted gradually with chunks that are optimally reduced and self-labeled. Using
a highly-dimensional and multi-class dataset, we conduct several experiments to demon-
strate our incremental learning approach’s efficacy and compare it with incremental
learning using human-annotated labels.
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1. Introduction

For monitoring risks and specific events of individuals, their physiological information is
crawled continuously or periodically from sensor devices. Incremental learning is vital for
this particular context in order to respond to incoming data in real-time and learn from the
new data efficiently. Numerous studies showed the dominance of incremental learning to
static learning in terms of time-efficiency and predictive accuracy [1–4]. Incremental clas-
sifiers extend their knowledge without re-training from the scratch, i.e., without accessing
the previous training data [2], which saves a great deal of time. The most crucial contrast
between incremental and static learning is that the former does not necessitate the acces-
sibility of sufficient training data; rather, the incremental classifiers receive data over the
time and learn gradually [3].

Even though many observations can be gathered, only a segment is helpful for particular
decision-making and prediction tasks. In fact, when the dimensionality of datasets increases,
the classification performance decreases, which is due to the participation of similar and
insignificant features [5]. Dimensionality Reduction Algorithms (DRAs) focus on the curse of
dimensionality by reducing data complexity and improving data quality. DRAs are primarily
classified into feature selection (FS) and feature extraction (FE). FS retains only the most
significant and informative features, whereas, FE combines similar features into unique
features via algebraic transformations [6]. Our study investigates FE methods since they
can better tackle the complexity, noise, sparsity, and non-linearity of real-life datasets [7].
These methods are in turn classified into supervised and unsupervised. We explore only the
unsupervised DRAs because incoming data are unlabeled.

Nevertheless, incremental learning assumes that data is already labeled, which is not
the case in the setting of new data that arrive over time. To solve the issue of unlabeled
data, the study [8] suggested adopting semi-supervised learning with self-training. Hence,
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our study combines self-labeling with chunk-based incremental learning, which is essential
for classifying and learning efficiently from incoming unlabeled data. In the situation of
highly dimensional chunks, we search for the best DRA method, leading to the optimal
low-dimensional feature space. To determine the optimal DRA, we evaluate multiple rep-
resentative FE methods and assess the transformed datasets’ quality using two correlation
metrics, the statistical significance and power analysis, and run-time as well. Based on the
metric values, we select the optimal feature set that we utilize for all the incoming chunks.
The classifier is then adjusted gradually using chunks that are first optimally reduced and
then self-labeled. We assess our approach’s performance through a highly-dimensional (561
features) and multi-class (6 classes) dataset. We prepare the dataset for the incremental
learning process by organizing it into several chunks: one initial training chunk and sev-
eral unlabeled chunks. To guarantee the reduced chunks’ quality, we compare the new and
original chunks using the correlation metrics mentioned above. We further validate our incre-
mental learning approach by comparing it with incremental learning using human-annotated
labels.

We structure the paper as follows. Section 2 discusses recent research on incremental
learning. Section 3 summarizes the characteristics of several DRAs. Section 4 presents
two algorithms, the FE process and the incremental learning process based on self-labeling.
Section 5 prepares the selected dataset to evaluate and validate both algorithms. Section 6
performs several experiments to assess the two algorithms and compares incremental learning
using pseudo-labels with incremental learning using actual labels. Section 7 concludes with
some findings and future work.

2. Related Work

For the product prediction of buyers, the study [9] developed an incremental matrix
factorization method based on the SGD algorithm but considered only the positive feedback.
The method (called ISGD) adjusts the factor matrices gradually for the current instance,
and for each rating, it measures the corresponding error and then conducts the update
operations. Through four datasets, the experiments reveal that ISGD is competitive, but
signicantly faster than other known algorithms, such as "Bayesian Personalized Ranking MF
(BPRMF)", its weighted variant (WBPRMF), and the incremental version of the "User-
based Nearest Neighbors algorithm (UKNN)". ISGD is a clear winner for two cases, and
for the remaining cases, UKNN returned better Recall, but ISGD was faster. However, for
training, ISGD employs only the true values (positively rated products) and considers the
false values (either a user disliked the product or did not interact with it) missing. Still, it
is not clear how these missing values were handled.

In real-life scenario, the streaming data that are generated incessantly over time is un-
structured, and it is a tedious task to classify these data as they lack the target class labels.
Therefore, the study [10] presented the "Classification of Unstructured data using Incre-
mental Learning approach (CUIL)". The proposed method uses the uCLUST algorithm to
cluster meta-data to assign the class-labels to each cluster, and later these labeled data are
fed to a feed-forward neural network named "Extreme Learning Machine (ELM)" to incre-
mentally assess the new data batches. CUIL randomly selects the input weights with one
hidden layer. Nevertheless, to reduce the training time and memory storage significantly,
CUIL trains every new data batch separately. The experimental results demonstrate better
efficiency and accuracy over the existing well-known Learn++ algorithm. Nevertheless, the
authors did not provide detailed information about hyper-parameters and architecture for
the ELM network.
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The authors in [11] suggested a chunk-based incremental learning algorithm (named
CICSHL-SVM) based on the "Cost-Sensitive Hinge Loss" function. The method adjusts
an entire data chunk at once and supports the model stability using the cost-sensitive Bayes
risk. It also handles the dual problem of SVM, where the objective function is minimized
under some constraints using the convex optimization theory. The authors validated the
new algorithm with eleven benchmark datasets. The experimental outcome confirms the
efficacy of CICSHL-SVM and demonstrates that it outperforms the static version and the
single incremental version (learns instance by instance). Nevertheless, the authors did not
mention anything about the penalties of the cost-sensitive classification.

Recently, the research [12] introduced an incremental unsupervised neural network, called
SOINN+. The latter differs from its past version SOINN that is capable of learning from
the non-stationary data based on the forgetting method. The deletion of nodes and edges
is determined using two hyper-parameters in SOINN and those hyper-parameters are opti-
mized utilizing the cross-validation. However, SOINN+ tackles this inadequacy by rejecting
the nodes and edges that are not relevant for the learning process, and thus leads to an
improved forgetting mechanism. The authors also defined three concepts to obtain a more
graceful forgetting: a) idle time, b) (un-)utility of a node, and c) trustworthiness. In the
experiments, SOINN+ and five other stream clustering techniques were used to identify the
clusters in the noisy data streams with sudden and recurring concept drifts. The authors
utilized real-world and synthetic datasets for the experiments and the results revealed that
SOINN+ could distinguish the actual clusters and is able to preserve the determined shape
even under the sudden and recurring concept drifts than the other methods.

The work [13] defined a chunk-based incremental classification algorithm to highlight the
critical issue of shill bidding data labeling in commercial auctions. For addressing the issue
of scarcity of labeled data, the authors used SGD algorithm to develop the incremental
learning process as SGD is independent of the training chunks’ size, which is essential in
real-life auction fraud detection scenarios. The authors also demonstrated how to adapt the
SGD classifier progressively with new training chunks. Based on a real auction fraud dataset,
the experiments showed that the sequential trained classifiers’ performance increased for
each incremental training phase. In contrast, the misclassification rate, run-time, and loss
decreased steadily.

Lastly, to detect malicious bidders in e-auctions, the recent study [14] developed a self-
adaptive chunk-based incremental learning framework. The self-adaptive framework can
function in real-world auction settings, which first classifies incoming bidder chunks for
countering the fraud bidders in every auction and takes required measures. The fraud
classifier is adapted with the confident bidders’ labels that are validated through two verifi-
cation models: (1) bidder verification and (2) one-class classification. Besides, the authors
presented an extensive experimental study utilizing a real fraud dataset built from eBay
commercial auctions where the classifier adapts incrementally by utilizing only the relevant
bidding data. Later, the adjusted models are evaluated using misclassification and detec-
tion rates. Furthermore, the authors considered the fact that the adaptation chunks can be
imbalanced and different class ratios may be present in real-life scenarios, and tackled this
concern by retaining only the trusted fraud data and under-sampling the trusted normal
data strategically. A comparison between the proposed framework with static learning and
learning without data relevancy is also presented to show the superiority of the proposed
framework.
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3. Dimensionality Reduction

In general, FEs downsize the column (features) number or converts a sphere to a circle in
two-dimension [15]. FE methods merge correlated features to new features by maintaining
the original features’ inherent properties [16, 17]. These DRAs look for a manifold rep-
resentation to project high dimensional input data and then regulate a lower-dimensional
space embedded in the input space [18]. DRAs have several benefits, such as improving
the model generalization capability and lowering overfitting through less misleading fea-
tures, and reducing processing time and data storage [16]. Since DRAs depend on the data
characteristics and quality, we explore diverse unsupervised algorithms to non-linearly and
linearly transform the high-dimensional space to the reduced feature space. After review-
ing the literature thoroughly, we choose the most successful DRAs. The work [18] found
out that the following methods are more efficient as they can adapt the local data struc-
ture in a better way, such as Locally Linear Embedding (LLE), Laplacian Eigenmap (LE),
Kernel Principal Component Analysis (KPCA), Isometric Mapping (ISOMAP) and Multi-
Dimensional Scaling (MDS). In Table 1, we summarize the essential characteristics of the
selected DRAs.

Table 1. Unsupervised Feature Extraction Methods

Goal Iterative Tuning

Parameters

Computational

Complexity
Weakness Transformation

MDS
Preserve

Euclidean pairwise

distances

Yes
Iterations,

number of

components

O(n3)

Require large

memory to calculate

dissimilarity matrix

and

high computation time

Dissimilarity matrix

by Euclidean distance,

Eigen decomposition

KPCA Maximize

variance
Yes

Kernel function,

number of

components,

O(n3)

Computationally

expensive and

high memory

consuming

Eigen decomposition,

Kernel mapping

LLE Preserve

local properties
Yes

iterations,

number of

components,

nearest

neighbors

O(dlog(c)nlog(n)

+O(dnc3)+

O(kn2)

Less accurate in

global structure

Neighborhood graph,

Reconstruction of weights,

Eigen vector based

optimization

ISOMAP
Preserve

geodesic pairwise

distances

No

Number of

components,

nearest

neighbors

O[dlog(c)nlog(n)+

O[n2(c+ log(n))]+

O(kn2)

Suffer from

topological

instability

Geodesic distance,

Neighborhood graph,

Extension of MDS

LE Preserve

local distances
No

Nearest

neighbors,

number of

components

O(dlog(c)nlog(n)

+O(dnc3)+

O(kn2)

Can generate

disconnected

neighborhood graph

Weight update of edges,

Neighborhood graph,

Cost function optimization

For instance, MDS converts data into lower dimensional space by calculating the dissim-
ilarity in a way that less similar data are far apart and similar data are together [19]. MDS
has two tuning parameters: number of features (called principal components for all the
methods) and number of iterations. KPCA adopts the Eigen decomposition to determine
the new feature space [20]. KPCA has two meta-parameters: the number of fused features
and the Kernel trick, such as Linear, Polynomial, RBF, and Sigmoid functions, to project
the data into higher feature space, hence data become linearly separable [20]. However,
KPCA has high memory consumption [21]. LLE uses a neighboring graph to transform
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the input data space and preserve its geometric structure (local properties) [22]. LLE first
finds the NNs of every data points employing the Euclidean distance, then computes the
local weights to represent data optimally as the linear combination of NNs by minimizing
the reconstruction error, and finally defines a new and unique vector space using the Eigen
vector-based optimization [23]. LLE has three tuning parameters: number of iterations,
number of PCs, and number of NNs. ISOMAP, which is also known as an extension of
MDS, initiates a neighborhood graph first by calculating the geodesic distances between ev-
ery pairs of data [24]. Then, it obtains the low dimensional embedding of the data through
Eigenvalue decomposition of the geodesic distance matrix. ISOMAP has two tuning param-
eters: number of NNs and number of PCs. LE finds the low-dimension data by preserving
the "local properties" of a manifold, that is close to LLE and produces a neighborhood
graph where all data points are connected to their NNs by an edge. Then, "Gaussian kernel
function" is employed to evaluate the weights of the edges [25] and LE minimizes the cost
function to reduce the dimensionality. It has two tuning parameters: number of NNs and
number of PCs.

A crucial query that rises is how to find out the optimal feature set that yields to the
highest data quality and predictive accuracy. For this purpose, we estimate the quality of
the reduced datasets using two correlation metrics: p-value and power analysis [15]. The
first metric measures the "statistical significance" of a test case and is evaluated using a fixed
significance level; the outcome of the p-value is statistically significant if it is less than the
fixed level [26]. In our context, a smaller p-value means an elevated possibility of possessing
better data [26]. The second metric denotes the likelihood of making a specific decision to
nullify the null hypothesis if it is false in a test case scenario. Henceforth, a higher power
value means the data is more robust [27].

4. Incremental Learning with Self-Labeling

Our incremental approach learns in real-time from incoming data that we organize in
the form of mini-datasets, called chunks. Each chunk represents the accumulated data for
a specific time period. However, in real-life scenarios, incoming data are unlabeled, and
obtaining the labels is very costly due to the human expertise access and time delay. Hence,
this work merges self-labeling and chunk-based incremental learning to instantly assign
labels to the new chunks and adjust the classifier progressively with pseudo-labeled chunks.

Incremental learning targets to improve an existing model gradually with new data,
without retraining from the beginning, and without immediately forgetting the learned
knowledge [3, 4]. For this purpose, we should guarantee the stability and plasticity of
the classifier [14]. Indeed, our incremental classifier should be stable enough to retain the
information of the current and previous chunks a little longer in the memory and should
forget past chunks gradually. Otherwise, the classifier will no longer be able to adapt to new
data appropriately [28]. We implement our incremental learning algorithm using the Scikit-
learn toolkit to leverage the available incremental mechanisms, such as the incremental API
for conducting incremental learning (instance by instance), the ‘PartialFit’ for receiving
data sequentially in the form of mini-datasets, and the incremental memory model for
implementing the stability and plasticity strategies. All these mechanisms are described in
detail in [4].

As the base classifier for the incremental learning process, we choose the SGD algorithm
since: a) it supports the ‘PartialFit’ approach to process the data in chunks, b) it is indepen-
dent of the size of the training chunks, which is important in practice since chunks come in
different sizes, and c) has fewer tuning parameters, such as the learning rate, loss function,
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Algorithm 1: Incremental Learning with Self-labeling of Incoming Highly-
dimensional Chunks

Inputs: initialChunk (balanced), incomingChunks
Output: improved classifier

*Make SGD Incremental*
1: connect(IncrementalAPI, PartialFit)
2: wrap(SGD, IncrementalAPI)
*Determine best DRA and best number of PCs for initial chunk*
3: Algorithm2(initialChunk, out optimalReducedChunk, out bestDRA, out
bestNumberPCs)

*Build Initial Classifier*
4: classifier = train(SGD, optimalReducedChunk, 10-fold CV)
*Incremental Learning phases*
5: for each incomingChunk do

*Transform incoming chunk*
5.1: optimalReducedChunk = extractFeature1(incomingChunk, bestDRA,
bestNumberPCs)

*Self-label transformed chunk*
5.2: ClassifiedChunk = selfLabel(optimalReducedChunk, classifier)
*Re-balance labeled chunk*
5.3: if highClassRatio(ClassifiedChunk) then

5.3.1: resample(ClassifiedChunk, newRatio)
*Adapt classifier with incremental chunk*
5.4: adapt(classifier, ClassifiedChunk, modelMemory)

Algorithm 2: Dimensionality Reduction of Data Chunk
Input: dataChunk
Outputs: optimalReducedChunck, bestDRA, bestNumberPCs

1: allReducedChunks = emptyset

2: for each DRA do
2.1: do

2.1.1: bestReducedChunkDRA = extractFeature2(dataChunk, DRA)
2.1.2: evaluateQuality(bestReducedChunckDRA)

while data quality not satisfactory;
2.2: allReducedChunks = allReducedChunks ∪ bestReducedChunckDRA

3: selectBest(allReducedChunks, out optimalReducedChunk, out bestDRA, out
bestNumberPCs)

and penalty, when compared to neural networks [13]. Algorithm 1 exposes the incremental
learning approach using self-labeling of incoming chunks with highly dimensionality. First,
based on the 10-fold Cross Validation, we develop the preliminary SGD classifier using the
optimally reduced initial training chunk. The latter is obtained by testing several DRAs
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to determine the optimal low-dimensional feature space (see Algorithm 2). The data qual-
ity is measured with the two correlation metrics presented in Section 3. Subsequently, we
transform each incoming unlabeled chunk using the best DRA and the optimal number
of Principal Components (PCs) obtained in the initial stage, and then adapt the classifier
gradually with incremental chunks: transformed, self-labeled and re-balanced. In case the
self-labeled chunk is highly imbalanced, we adopt a hybrid data sampling technique, such
as SMOTE-ENN, to re-balance the class distribution with the appropriate ratio [29, 30].

5. Data Chunk Organization

We choose a multi-class dataset called "Human Activity Recognition (HAR) Using Smart-
phones", made public in the UCI repository in 2012 [31]. The labeled dataset has six classes
indicating six activities (Walking, Sitting, Standing, Laying, Walking Downstairs, and Walk-
ing Upstairs). HAR has a tally of 10,299 records and 561 features that are already scaled
to the range of [-1, 1]. For conducting the initial and incremental learning tasks, in Table
2, using the stratified splitting method, first, we divide the HAR dataset into the initial
training chunk (30% of data) and a subset (70% of data). This subset is in turn stratified
split into four chunks. However, we consider the four chunks without their labels to simulate
the arrival of incoming data. The initial chunk should be adequately representative to build
a robust initial classifier. As seen in Table 2, the initial chunk is balanced because the six
classes are well distributed.

Table 2. Initial Training Chunk and Incoming Chunks

Initial Training Chunk (3089)

Class#1 Class#2 Class#3 Class#4 Class#5 Class#6

516 463 422 533 572 583

Incoming Unlabeled Data (7210)

Chunk#1 Chunk#2 Chunk#3 Chunk#4

1802 1803 1802 1803

6. Experiments

6.1. Feature Extraction

Initial Chunk: We first evaluate the selected DRAs on the initial chunk to identify the
best FE method and the optimal number of principal components (PCs) using three quality
metrics: p-value, power analysis, and processing time (in seconds). For KPCA, we use the
Gaussian function RBF. We optimize the other DRA parameters, such as the number of
iterations and number of NNs. Table 3 exposes the DRA results for the initial chunk: the
original and reduced chunks. We can see that LLE is the best method as it returned the
lowest p-value and a high power analysis.

LLE is ranked second in terms of run-time, with a gap of 10.3 seconds with the fastest
method (KPCA). Time values denote the processing time of a chunk of data (here 3089
records with 6 classes). From the DRA summary in Table 1, we can see that both MDS and
KPCA are computationally expensive. In Table 3, KPCA takes much less time than MDS
since MDS requires three times more iterations than KPCA. On the other hand, although
KPCA and LLE have the same number of iterations, LLE requires more time since it
calculates the Eigen vector-based optimization on top of computing the neighborhood graph



8

and reconstruction of weights. We may notice that for p-value and power, we obtain 0 and
1 respectively for all the DRAs except LLE. These values are due to the non-Gaussian
distribution of the HAR dataset and the presence of six class targets. LLE efficiently
reduced the dimensionality from 561 to 225 (ranked second), saving the processing time
for the incremental training and data storage as well. MDS generated the highest number
of PCs and is the slowest method. Another important observation is that all the DRAs
provided much better data quality than the original chunk. Consequently, we select LLE as
the optimal DRA for our 6-class dataset.

Table 3. Initial Chunk Quality: Original vs. Reduced

Initial Chunk
Principal

Components

Nearest

Neighbors
Iterations P-value Power Time

Original 561 NA NA 0.437 0.121 NA

KPCA 300 NA 100 0 1 5.2

MDS 478 NA 300 0 1 893.2

LLE 225 5 100 1.04e−11 1 15.5

ISOMAP 323 9 NA 0 1 20.7

LE 205 7 NA 0 1 26.5

Incoming Chunks: Next, we perform the LLE method with the number of PCs equal to
225 on the four incoming chunks separately. Each transformed chunk has a feature-space of
225 and the same size as its original version (see Table 2). Table 4 assesses the data quality
of the reduced incoming chunks and also the quality of the original (non-reduced) chunks.
Across the four chunks, we can see that p-value decreased and power analysis increased
after performing LLE. For instance, we obtain a very low p-value of 7.52e−46 and a high
power of 1 for the first reduced chunk, with a substantial p-value and power gaps when
compared to the original first chunk. Moreover, the second chunk returned the lowest data
quality after the transformation, but it is still very satisfactory. Also, we notice a very low
run-time when executing LLE, which is significant for the fast processing of incoming data
in real-life contexts. For example, LLE required only 3.42 seconds to transform the first
incoming chunk (1802 records and 561 features) to a new one.

Table 4. Quality of Reduced and Original Incoming Chunks

Incoming Chunk
Principal

Components
P-value Power Time

Reduced#1 225 7.52e−46 1 3.42

Reduced#2 225 0.332268 0.162 3.74

Reduced#3 225 1.46e−15 1 3.40

Reduced#4 225 3.63e−16 1 3.82

Original#1 561 0.249 0.210 NA

Original#2 561 0.416 0.128 NA

Original#3 561 0.975 0.050 NA

Original#4 561 0.114 0.114 NA
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6.2. Multi-class Incremental Learning

Initial Classifier: For building the initial classifier, we first train the SGD algorithm on
the transformed initial chunk of 225 new features (presented in Table 3) using 10-fold cross-
validation. Table 5 presents the performance of the initial classifier in terms of Precision,
Recall, F1-score, False Negative Rate (FNR) and Run-time. The initial classifier provided
high performance where the F1-score and FNR are 92% and 8% respectively and took only
1.995 seconds to learn from the whole chunk.

Incremental Learning: Next, we adjust the classifier over time with newly introduced
chunks that are first optimally reduced in Table 4 and then self-labeled using the same
classifier. However, before conducting any incremental training, we first verify the class
distribution ratio of each self-labeled chunk. The 6 classes are balanced in each chunk.

In Table 5, we build four different models incrementally and show their performance
using the reduced and self-labeled chunks (incremental chunks). Across all the models,
the classifier performance is high. There is a slight increment between the initial model
and the last model because SGD classifier is learning from small-sized chunks. So, we
believe the accuracy will increase over time with more incoming chunks. The difference in
terms of the misclassification rate between the initial and the last incremental chunks is
1.1%, which means that the classifier is predicting more accurately over time. As observed,
the incremental learning does not take much time; the highest time is only 0.370 seconds,
which is essential in the context of speedy data flow. Moreover, the classifier requires
less time for the last chunk among all other chunks, whereas the initial chunk necessitates
the maximum time because this is the first time the classifier is learning from the data.
Regarding the incremental chunks, the classifier improves its knowledge without re-training
from the beginning, which saves a lot of time.

Table 5. Incremental Learning Performance with Pseudo-labels

Chunk
Improved

Classifier
Precision Recall F1-score FNR Time

Human-

Annotated

Initial Chunk

Initial Model 0.920 0.920 0.920 0.080 1.995

Incremental

Chunk#1
Model#1 0.924 0.926 0.925 0.074 0.370

Incremental

Chunk#2
Model#2 0.909 0.909 0.909 0.091 0.220

Incremental

Chunk#3
Model#3 0.905 0.904 0.905 0.096 0.200

Incremental

Chunk#4
Model#4 0.930 0.931 0.931 0.069 0.170

6.3. Pseudo Labels vs. Human Labels

Table 6 compares the performance of the incremental learning approach between pseudo-
labels and human-annotated labels for all the incremental chunks. Note that, here, learning
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with human-annotated labels is still incremental. The latter returned slightly better accu-
racy for all the chunks because those labels have been labeled with ground truth by one or
more human experts. In contrast, some pseudo-labels may have a weak annotation. Still,
our approach is competitive to the approach with human-annotated labels. For incremental
chunk#1, the pseudo-labeled data provided an F1-score of 92.5% and the human-annotated
data F1-score of 93%, with a difference of only 0.5%. The gaps are 0.3%, 2.7% and 2.3%
for chunk#2, chunk#3 and chunk#4, respectively. As new chunks arrive over time, our
approach’s accuracy will improve as the classifier learns from new data.

Table 6. Performance: Pseudo labels vs. Human-annotated Labels

Incremental Chunk

F1-score

Pseudo Labels
Human-annotated

Labels

#1 0.925 0.930

#2 0.909 0.932

#3 0.905 0.932

#4 0.931 0.934

7. Conclusion

Our study jointly addressed three significant problems: incoming unlabeled data chunks,
high data dimensionality, and incremental learning. For this purpose, we combined the
chunk-based incremental learning approach with self-labeling and FE. We assessed several
unsupervised FE techniques using a high-dimensional dataset to determine the chunks’ opti-
mal low-dimensional feature spaces. The classifier is then gradually trained with incremen-
tal chunks: first optimally reduced and then self-labeled. The learned classifier maintained
high detection rates and low misclassification rates over the incremental learning process.
Moreover, since speed is crucial in risk and event detection, the incremental classifier could
process the incoming chunks in real-time. Lastly, we showed that our incremental learning
approach with pseudo labels is competitive to incremental learning with human-annotated
labels.

This current work provides several future research directions:
(1) We will investigate DRA for complex data, such as multi-dimensional time-series,

because the literature is minimal.

(2) We will also explore incremental learning using deep neural networks.
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