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Abstract

Histological bone research, which involves measuring the characteristics of a bone
(in this paper, we consider exclusively the boundary perimeter (bone perimeter, B.Pm),
cross-sectional area (bone area, B.Ar), width (cortical width, Ct.Wi)), has been greatly
enhanced by advanced medical imaging like the computed tomography (CT) scans, which
has made it possible to get cross-sectional images (or slices) of different areas of a bone.
The long bone, which is the major focus of our research, is divided into three parts ac-
cording to its structure: diaphysis, metaphysis, epiphysis. Efficiently measuring the bone
metrics mentioned above relies on being able to differentiate these areas from one an-
other, since the different regions require unique approaches. For example, the diaphyseal
region consists completely of the cortical bone and therefore obtaining the bone metrics
is not perplexing. On the other hand, when it comes to the area of the metaphysis,
and especially epiphysis, it becomes more difficult to distinguish the cortical bone from
the spongy bone, and so the task of extracting the bone metrics is hampered. In this
paper, we propose a fully automated solution for histological research of diaphysis. For
this we designed and trained a convolutional neural network-based model to classify the
cross-sectional images. Furthermore, we created computational methods to extract the
bone measurements and applied them to bones classified as "diaphysis".
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1. Introduction

Our proposed computational methods and model will be packaged into a software (and
open-sourced), which will perform the monotonous work of checking, analyzing and collect-
ing metrics from a vast number of images. Given the recent advancement in computed to-
mography (CT) scans and the importance of bone research (e.g., due to age-related changes:
mankind continues to increase average life expectancy, which causes progressive bone tissue
degradation when reaching a certain age; accidents and other traumatic incidents leading
to bone damage), it is also necessary to take care of the means of processing such a huge
amount of data.

Figure 1. Diaphysis Figure 2. Metaphysis Figure 3. Epiphysis
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2. Background

Recent years have witnessed an increased research to optimize automated bone histol-
ogy [1–3]. The ASBMR Histomorphometry Nomenclature Committee [4] published the stan-
dard nomenclature system for bone metrics. [2] did research on bone histology automation
for some of the bone metrics. [5] worked on various ways to optimize bone histomorphome-
try using the ImageJ toolbox [6], a popularly used software for medical image analysis. [3]
did an extensive study on the implementation of artificial neural networks to medical image
analysis: from discussing neural networks, to explaining the techniques involved in applying
them to computer-aided diagnosis, medical image segmentation and edge detection.

This project contributes to the wide research on automated bone histology, by utilizing
deep convolutional neural networks [7] and creating unique algorithms to compute some of
the bone metrics effectively, especially when many images are involved. Before discussing
the project, it is important to give a brief overview of the following bone histology-related
terms:

Adult bones can be classified into two different types depending on their porosity: cortical
bones and spongy bones [8]. The microstructures of these bones are changed by means of
load adaptive remodeling to meet the mechanical requirements. Consequently, osteons in
dense cortical bone and trabecula in porous spongy bone are aligned along the direction of
local loading. It is believed that the difference in the porosity of the cortical and spongy
bone is due to the difference in the local balance between bone formation and resorption.
On the one hand, bone formation, i.e. an increase in the volume of mineralized bone, is
associated with an improvement in the bearing function of mineralized bone. On the other
hand, bone resorption, i.e. increase of bone marrow volume, is connected with improvement
of material-transport function of bone marrow.

The long bone can be divided into three parts according to its structure: diaphysis,
metaphysis, epiphysis. The epiphysis is located at the ends of the bone, closely followed by
the metaphysis, while the diaphysis occupies the middle. Diaphysis is the main and longest
part of the bone. It consists entirely of the cortical bone, containing the medullary cavity,
which stores the red and/or yellow marrow (so it is also known as the bone marrow cavity).
The metaphysis is a narrow part of the long bone between epiphysis and diaphysis. It has
a thinner area of cortical bone, a larger spongy bone and a wider corresponding diaphyseal
part. The porosity in the metaphysis region is larger than in the diaphysis region, and the
periosteum is more firmly fixed in the metaphysis region as it approaches the epiphysis [9].
The epiphysis lies between a growth plate (physical) and a joint at the end of the bone. In
mice and humans, most tubular bones develop epiphysis at both ends. Some bones, such
as phalanges, metacarpal and metatarsal bones, usually only form this structure at one end
[10].

The cortical bone surrounds the diaphysis and metaphysis of long bones and is a solid
matter with a porosity of approximately 5%. The spongy bone part, also sometimes referred
to as trabecular, is usually found at the ends of long bones and within the vertebral bodies.
Spongy bone (Click to see figure) is highly porous (>70-80%) and consists of more voids
than bone (Click to see figure), which resembles a lattice in structure. The large surface
area contributes to the fact that the spongy bone has a higher metabolic activity than the
cortical bone. Although it is believed that the cortical bone carries most of the load in an
individual bone, spongy bone contributes and serves to distribute the load to the cortex.
The effect is achieved by the sponge network and the individual trabecula. Individual human
trabeculae are 100-200 µm thick and have shapes ranging from cylindrical rods to flattened
plates. The cortical bone is approximately 80% of the skeletal mass and the spongy bone is
approximately 20%.

https://drive.google.com/file/d/1BtYUMRvSricMUEnC3ROli_uMoANfRLRf/view?usp=sharing
https://drive.google.com/file/d/11XI4u53MbgWrEriIetIdvkXiQtL3vxuc/view?usp=sharing
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3. The Project

This project is divided into two parts: in the first part, we train the neural network to
recognize and classify bone slices into two categories: diaphysis, and not-diaphysis (meta-
physis or epiphysis) areas. In the second part, using the images classified as diaphysis, we
propose computational algorithms to estimate the bone metrics.

3.1. Part 1: Implementation of convolutional neural networks - DARY

In this stage, we design and train a model to learn to classify the bone cross-sectional
images into "diaphysis", and "not-diaphysis". In the following sections we will describe the
data collection, preprocessing, training and results.

Data Collection and Preprocessing
The dataset was collected from O.A. Sachenkov’s research group [2, 11]. The images are

cross-sectional slices of mouse bones obtained through CT scans. Due to the complexity of
finding standard bone characteristics in areas such as metaphysis and epiphysis (although
the extraction of these characteristics from the diaphysis area is not a perplexing one),
namely, obtaining incorrect data, due to the fact that bones in such slices may look quite
differently (View images 1 and 2), the complexity of interpretation of the image itself, i.e.
finding the boundary between the spongy and cortical bones, the difficulty of determining
where the metaphysis ends and the epiphysis begins, we decided to design and train a model
to make this classification.

The original data were stored as ".vol" files, each representing a three-dimensional image
of a bone (examples of 3D visualizations can be seen here: 1, 2, 3). Due to the fact that such
three-dimensional images are obtained by stacking or superimposing two-dimensional slices
on each other, it was possible to "cut" the three-dimensional image into two-dimensional
slices for our study.

In order to successfully divide a three-dimensional image into two-dimensional slices, it
was important to know the data format (16-bit unsign int) and image dimensions. For
example, "718 749 933" meant that from this three-dimensional file we could get 933 two-
dimensional slices of 718×749 size. All the two-dimensional, cross-sectional images obtained
(a total of 8556) were saved in grayscale format, which were resized to (224, 224), in order to
match the dimensions of the pretrained model. Data augmentation (in the form of random
horizontal/vertical flips, and rotations) were made.

Training of DARY
DARY — uses the pretrained EfficientNetB0 model1, based on the EfficientNet [12] ar-

chitecture, as a feature extractor, with the fully connected layer of the EfficientNetB0 model
switched with a new one with two classes for ["Diaphysis","Not Diaphysis"]. We used this
pretrained model because it has been shown to give best results on CT image classifica-
tion [13, 14].Weights (for the final fully connected layer) were initialized with He initial-
ization [15]. The size of each image is (height=224, width=224, number of channels=3).
We divided the samples as follows: 5455 samples for training, 2139 for testing, and 962 for
validation. We made sure that both classes were equally represented in each of the three
categories (for training, validation, and testing) to avoid imbalance. To compile the model,
we used the Adam2 optimizer with a learning rate of 0.001, and an exponential learning
rate decay (after 10 epochs). We also experimented with the ResNet50 [16]), but got better
test results with DARY. DARY has a total of 5.3M parameters. We trained DARY for 102
epochs (small epoch since we are performing feature extraction with the pretrained model).
All training was done with PyTorch and the code is available here.

1https://github.com/lukemelas/EfficientNet-PyTorch
2https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

https://drive.google.com/file/d/18o27D8105Yx4EQG2Rogiy4VHiE_fIdeC/view?usp=sharing
https://drive.google.com/file/d/1B50Mste-Id3Hhrq5mtrsCK8JcZWn9xKX/view?usp=sharing
https://drive.google.com/file/d/1q7UI3SB8Moymz1kfKsf1waDXZEnf_Kvg/view?usp=sharing
https://drive.google.com/file/d/1Y51TYDfwrYNkD5PqOstgHo3CAVYPN-aP/view?usp=sharing
https://drive.google.com/file/d/1z0xrDj5U2KkEVpm0PT4VtG7ErUuAtnJt/view?usp=sharing
https://colab.research.google.com/drive/1TuzxloKRiUCvtEFRo3IL3iVb0Hj4rMNT?usp=sharing
https://github.com/lukemelas/EfficientNet-PyTorch
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
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Results of DARY
Although DARY was trained on few samples (and few epochs), it was able to learn the

distinctive features of diaphysis, and non-diaphysis in bone CT images. On the testing
samples, DARY had an accuracy of 64.64%. The table 1 shows the performance of DARY
on images from the test data set (i.e., on which no training was conducted). Furthermore,
our independent human evaluations on several samples (checks were carried out for each
class many times, but we gave only one example for the sake of brevity) demonstrated, as
shown in Table 1, that DARY is capable of detecting abstract distinguishing features of
images with and without diaphysis, and can tell whether the slice belongs to diaphysis or
not.

Table 1. Predictions from DARY for sample test images

Test Images
(Click to view Image) True Class Predicted Class
Image 1 diaphysis diaphysis
Image 2 not-diaphysis not-diaphysis
Image 3 not-diaphysis not-diaphysis

3.2. Part 2: Proposed computational methods for extracting bone metrics

Our goal is to extract the following bone metrics: the boundary perimeter (bone perime-
ter, B.Pm), cross-sectional area (bone area, B.Ar) and width (cortical width, Ct.Wi) in the
images classified as "diaphysis" by DARY. Originally the bone images (slices) (see figure)
are grayscale images, and their pixel values are in the range from 0 to 65535. In order to
work with an image, we first convert each value to either 0 or 1 and thus get a black-and-
white image (see figure). This process is called threshold binarization. For each image we
find a value (threshold) m + 246α, where m — is the average pixel value for the current
image. We can vary the α parameter so that we get different black and white images. This
method is global thresholding.

If we set α big enough, we get rid of white dots outside the bone which are of no interest
to us, but simultaneously we also get more black dots on our bone. To get rid of the resulting
black holes, we add layers of white dots to all the existing white point boundaries, thus filling
the holes. Although this method successfully gets rid of holes, it also adds several layers
of white dots to the bone, making the bone thicker, the perimeter of the outer boundary
bigger and the inner smaller, i.e. distorting the original data. Therefore, several stages of
adding white point layers are followed by several stages of removing white point layers to
return the bone to its original shape (compare before and after).

Comparison of OpenCV: OpenCV3 doesn’t work directly with .vol files. We worked
on raw (.vol) files and wrote algorithms to work with raw pixels directly. There are many
stages in our work (binarization, filling holes, finding boundaries, grouping points) and for
each of them we used our algorithms. Applying OpenCV to that particular stage would
require converting each 2D slice of an initial 3D raw file to jpg, then filling holes using erode
and delude functions, and then converting back to continue working with raw pixels, which
is time consuming. Erode and delude functions don’t offer a better result than ours. From
the results we got, closing (opening) operation is better, as it doesn’t distort boundary line,
while filling holes. But for these functions to give optimal results, the hyperparameters need
to be manually tuned, which is contrary to our goal of automating the process.

3https://docs.opencv.org/master/d4/da8/group__imgcodecs.html, Accessed: 20.04.2021

https://drive.google.com/file/d/1v1Zh397x50eE8tBYLENrYdj3egXMr0je/view?usp=sharing
https://drive.google.com/file/d/194EddImLA1Qzq6jJyU4OFC4rIX-bF-5I/view?usp=sharing
https://drive.google.com/file/d/1-StOrruAMU6xq32gFeabLLFvRHaHA67i/view?usp=sharing
https://drive.google.com/file/d/133V7qMD1msWmzEhGLEsD92cfQB0AjHdm/view?usp=sharing
https://drive.google.com/file/d/1h_nug0XMoPgR8Beuhfv21NyOmJ63Yh7A/view?usp=sharing
https://drive.google.com/file/d/1h_nug0XMoPgR8Beuhfv21NyOmJ63Yh7A/view?usp=sharing
https://drive.google.com/file/d/1fTGC3sXxhc3Ju6PT49iSL8PDqq-dRQ1S/view?usp=sharing
https://docs.opencv.org/master/d4/da8/group__imgcodecs.html
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To find the cortical bone area, we count the number of white dots in the image, then
we convert the obtained number knowing the resolution of one pixel, e.g. 0.006986 mm. ×
0.006986 mm to find actual area.

To find the perimeter, we need to first find the bone boundaries. Our bone is a set.
In order to find boundary of a set we exclude interior points. Using the definition of an
interior point: A point a is called an interior point in A, if ∃ε > 0 : Oε(a) ⊂ A, we
check all white points in the image. If the current white point (x, y), among the points
(x+1, y), (x−1, y), (x, y−1), (x, y+1), (x−1, y−1), (x+1, y−1), (x−1, y+1), (x+1, y+1)
surrounding it, has < β white dots, then we put it in the list of boundary dots, if not, we
make it black. Any number from 1 to 8 can be taken as β: if β = 1, the whole image
will be painted black; if β = 8, the boundaries will be very dense and delineated, but the
number of points will also be large, which will increase the computation time of the next
stages, which will be discussed later. If β = 6, then the boundary points will be very close
to each other, albeit much smaller in number. The resulting set of boundary points (see
figure) should be divided into groups of boundary points: the outer boundary of the bone,
the inner boundary, etc. For this purpose, we created the following algorithm which utilizes
the distance between the points.

Algorithm:
Suppose we have a set of boundary points W , consisting of points w0, w1, w2, ..., wn. We
take the first point, w0, and mark it with a0. Then we add a0 to the new group of boundary
points A, remove it from W , and count the distance from a0 to each of the remaining points
{w1, w2, ...wn}. The point, ws, that gives the smallest distance is marked with a1, added to A
and removed fromW . Now we find the distances from a1 to {w1, w2, ..., ws−1, ws+1, ..., wn}.
We take the point corresponding to the smallest distance, wl and similarly mark it with a2,
add it to A, and remove it fromW , etc. We continue this iterative process until the smallest
distance is more than γ (an asigned value to prevent moving beyond the boundary being
considered) or we come across the point a0, which means that we are back to the beginning
of the boundary. In both cases we should create a new group of points, take the first of
the remaining W points and perform the same iteration until we reach the same stopping
criteria. We continue this process until we have exhausted all the W boundary points.
The total number of boundary points n affects the speed of the algorithm as distances

should be calculated
∑n

i=1 i times. So it is preferable to set β as low as possible. Empirically,
we have found that β = 6 is optimal for subsequent grouping of points, since the points
within one boundary are close enough to each other. This is not the case for β = 5,
which may lead to incorrect groupings; points of the same boundary can be mis-classified as
belonging to different boundaries, leading to a "torn" boundary line, which occurs when one
boundary is broken into several disconnected curves. As a result of running the algorithm,
all boundary points from W will be divided into groups. Then, based on the fact that in
the diaphyseal zone the only possible situation is when there is one inner and one outer
boundary, the boundaries we are interested in are therefore the two biggest clusters of the
grouped points, and the greater boundary of the two is the external, since it has a larger
diameter.

4. Conclusion

In this paper we proposed a solution to the task of extracting bone measurements from
cross-sectional CT scans. First we introduced our model, DARY, trained to classify the
cross-sectional images into two categories of "diaphysis", and "not-diaphysis". We further
developed algorithms and methods to calculate some bone measurements (the boundary
perimeter (bone perimeter, B.Pm), cross-sectional area (bone area, B.Ar) and width (corti-
cal width, Ct.Wi)) of the processed images marked as diaphysis by DARY. Also, a method

https://drive.google.com/file/d/1K-4GbR4Qgdu7MQi4msVm4jY3LlVlUyBm/view?usp=sharing
https://drive.google.com/file/d/1K-4GbR4Qgdu7MQi4msVm4jY3LlVlUyBm/view?usp=sharing
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for filling small bone inclusions (black areas), through several stages of layering of white dots,
followed by several stages of layer removal, was proposed (see Section 3.2). This makes it
possible to get rid of unwanted areas virtually without changing the shape and measure-
ments of the bone (thickness, perimeter of boundaries). This method facilitates subsequent
processing of the image at the next stage of grouping boundary points, especially when the
inclusion is located close to the outer or inner boundary. To promote reproducibility, our
model and codes will be open-sourced on our Github page (link will be provided after the
review).
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