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Abstract
As machine learning models are being extensively deployed across many applications,

concerns are rising with regard to their trustability. Explainable models have become an
important topic of interest for high-stakes decision making, but their evaluation in the
legal domain still remains seriously understudied; existing work does not have thorough
feedback from subject matter experts to inform their evaluation. Our work here aims
to quantify the faithfulness and plausibility of explainable AI methods over several legal
tasks, using computational evaluation and user studies directly involving lawyers. The
computational evaluation is for measuring faithfulness, how close the explanation is to
the model’s true reasoning, while the user studies are measuring plausibility, how reason-
able is the explanation to a subject matter expert. The general goal of this evaluation is
to find a more accurate indication of whether or not machine learning methods are able
to adequately satisfy legal requirements.
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1. Introduction

Explainable AI (XAI) is an important area of study that seeks to explain or interpret
machine learning systems [1]. The ability to explain a decision is paramount to building
trust in an AI system, especially in high-stakes domains. For example, decision making and
evaluation tasks in law often have significant economic and social implications [2]. Along
with ensuring an XAI method is faithful to the model itself, it is important to involve the
end users to verify that their requirements are being met. Lawyers expect any tool they
use in their profession to show "fairness, lack of bias, transparency in the decision process,
and consequence awareness" [3]. These principles applied to AI can help detect biased legal
decisions and ensure machine learning models are providing more help to society than harm
[2]. However, the latest machine learning models are generally trading increased performance
for higher complexity, thereby losing their inherent interpretability. XAI methods have
been proposed to bridge this gap, but their evaluations are geared towards general machine
learning tasks, and are not thoroughly evaluated by subject matter experts. This raises
serious concerns on their reliability in high stakes scenarios.

It is therefore important to validate the feasibility of general XAI methods on specific
domains of interest. There are several industries that emphasize the need for explainability,
including medicine, law, and finance [4]. The medical domain has the most work published
on XAI, with a variety of evaluations from statistical analyses to user studies [5] [6]. User
studies are essential to evaluating XAI methods, as feedback from the main stakeholders
are integral to a well-engineered solution. However, there has only been one such study
conducted with lawyers [3]. Considering the economic and societal impacts of legal tasks,
XAI methods are still seriously understudied in this domain.

The following work aims to evaluate explanation correctness of machine learning models
applied to legal data and, by extension, the reliability of machine learning systems in law.
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Specifically, given a legal task with a curated dataset and a model trained on that data,
we seek to evaluate existing post-hoc explanation methods with the help of subject matter
experts. All the datasets are tabular — compared to text or image data, which also requires
the model to abstract information, tabular annotation data has a higher proportion of facts
already deemed important by a lawyer. Removing the layer of complexity presented by
natural language understanding or image processing brings this study closer to examining
a model’s learned reasoning. For AI systems that report a high accuracy, it is important to
understand if the system’s learned space is intuitive — i.e. plausible — to human experts.
This involves validating whether the explanations are true to the aforementioned learned
space, as well as assessing the generated explanations with experienced lawyers.

In summary, the contributions of this paper are as follows:
• The first explanation correctness study on tabular data in high-stakes decision mak-

ing. Although there is existing work on image and text, tabular data isolates the
factors that subject matter experts deemed important. This study brings a more
informative evaluation of explanation correctness when both the model and subject
matter expert have a definitive shared understanding of relevant facts.

• This evaluation is performed over three legal tasks from different areas of law. Using
datasets curated by legal subject matter experts, we compare the faithfulness of
two post-hoc, model-agnostic XAI algorithms against a model-specific explanation
method.

• A user study was conducted with subject matter experts to evaluate plausibility.
They have expertise in the specific tasks of interest, so their feedback is highly
valuable to evaluating plausibility. From this study, we propose new methods for
quantifying both plausibility and subjectivity.

2. Related Work

2.1. Explainable AI

One of the main goals of XAI is providing explainability. In addition to interpreting
the results of an AI system, XAI methods need to accurately explain the model’s decision
making process in a way that humans can understand [7].1 There are many overarching
principles to a high-quality explanation, including correctness, robustness, and simulata-
bility [6]. Within each principle, there are many desirable sub-properties. Existing work
[8] defines an explanation’s correctness as two components: faithfulness, also known as
accountability, and plausibility, also known as persuasiveness or trustworthiness. Faithful-
ness is how accurately the explanation reflects the model’s internal decision making process,
while plausibility is how reasonable the AI’s explanation appears to a human. It is possible
for an explanation to seem logical to a human while not truly reflecting the model’s process,
and vice versa, so both must be evaluated concurrently [8]. Although there are many meth-
ods of evaluating faithfulness, a popular one is conducting ablation in order of the estimated
feature importance, and measure the impact on performance (eg. a decrease in accuracy or
change in polarity) [6] [9]. There are many variations — for example, it is also possible to
evaluate faithfulness with synthetic data and known feature importance [10].

Faithfulness cannot be measured against human labels by definition [8], but plausibility
and other principles of explanation quality are best evaluated through user study. Several
interesting user studies have been conducted to evaluate model simulatability using general
NLP tasks [11] [12]. In contrast, this work’s user study evaluates explanation correctness,
and focuses on legal issues, which requires the help of subject matter experts.

1Explanability and Interpretability are interchangably used in some contexts. In this paper, they are different
and we follow the definition of explainability [7].
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Pursuits into explainability algorithms roughly follow two major categories of approaches:
ante-hoc and post-hoc. Within these approaches, there are two further types of explana-
tions based on their goals: global explanations that measure importance over the entire
dataset, and local explanations that explains specific data samples in terms of their input.

• Ante-hoc — Also known as self-explaining methods, ante-hoc implies that there is
inherent explainability in the model’s architecture, often incorporated by predicting
human-understandable concepts as an intermediate step [13]. Models with ante-
hoc explainability are considered inherently interpretable and generally desirable
[2]. However, they need to be purposefully designed into the model. Methods that
initially seemed inherently ante-hoc, such as attention mechanisms, have been found
to have issues with faithfulness [9].

• Post-hoc — These are methods that explain a model’s decisions after training. A
typical approach is building a secondary model to simplify or project the learned
space of the original, such as deconvolutional networks in computer vision [14].

This paper focuses on post-hoc, local explanations — specifically, post-hoc feature
attribution methods. Examples include SHapley Additive exPlanation (SHAP) [15], Inte-
grated Gradients [16], and Local Interpretable Model-agnostic Explanations (LIME) [17],
among others. Feature attribution methods are desirable because they can produce explana-
tions for specific samples [18]. This allows for more fine-grained understanding compared to
global importance or overall trends in the data, which fulfills the expectation of transparency
in the decision process for lawyers [3]. Many of these methods are also model-agnostic, i.e.
they can be extended to any underlying architecture, so they are more generalizable com-
pared to ante-hoc algorithms. There are drawbacks to post-hoc methods — LIME and
SHAP in particular have been shown to be vulnerable to adversarial attacks [19] [2]. How-
ever, because of their ease of implementation, post-hoc methods are ideal starting points to
quickly adopt explainability into existing technology. Global explanations serve a different
purpose in XAI — for example, they are likely preferred for text or image data, where high
levels of abstraction might make feature attribution less meaningful. In this study, since the
data is tabular, post-hoc methods were chosen for our purposes.

2.2. Explainability in High-Stakes Industries

Other high-stakes domains have also stated a need for explainability, with healthcare
having the most extensive publications and rigorous evaluations [20] [5]. The financial do-
main is another important industry for XAI along with medicine and law, with many works
noting the pertinence of explainability in their AI applications [4]. To our best knowledge,
however, there is no public work on XAI methods for financial data involving subject matter
experts — the ones found only perform statistical evaluations [21]. The closest known work
to this paper explores explanation correctness with subject matter experts on a medical
imaging task [6]. However, their work was on image data instead of tabular. As mentioned
in Section 1, images have additional complexity in abstracting facts compared to tabular
data, so our study is unique in its findings and challenges.

2.3. Legal AI

In our domain of interest, law, the application of machine learning technologies is com-
monly referred to as Legal AI. Though the field is broad, there are two major efforts as
determined by dataset curation method: manually annotating datasets, and parsing legal
documents automatically with the help of NLP [22]. Likely following the NLP trend, the
only known user study published was on a legal text classification task [3]. For text data,
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explainability goes beyond feature attribution — lawyers in that study, for example, wanted
the model to provide prior case law and citations. This is the major deep learning trend
in legal AI, and many works are pursuing ante-hoc explainability designs to that goal [23]
[24]. For post-hoc method evaluations, law is similar to the financial domain — most exist-
ing publications only include a statistical analysis without user study [25]. Work involving
subject matter experts is still sparse, likely because lawyers are more expensive to survey
compared to annotators in general machine learning tasks. However, it is still important
to evaluate explainability, especially conventional algorithms that are widely adopted in
practical settings, because of the potential economic and societal impacts.

3. Evaluating Explanation Correctness in Legal Data

This work’s main contribution is a study of multiple XAI methods as applied to legal
data. Due to the high stakes nature of the legal industry, professionals require adequate
explainability to trust the systems they use. For any machine learning model to be reli-
able, it is important to validate the learned logic with a lawyer, which consequently brings
greater confidence into their implementation and adoption. The definition of explanation
correctness used follows previous work [8], which clearly differentiates between faithfulness
and plausibility, both of which are fundamental to this study. This paper’s overarching
framework also borrows from existing methods [6], with two components: statistical analy-
sis for faithfulness and a user study for plausibility. For a comprehensive analysis, this work
evaluates multiple datasets over several areas of law. Each task has different challenges and
requirements from a legal perspective, to provide a more comprehensive evaluation of the
XAI methods. First, explanations are generated for all samples in the test set and those are
statistically assessed to determine faithfulness. A few samples were organized into a user
study, where lawyers validated how closely the explanation aligns with their understanding,
and metrics are extracted to create a quantitative measure of plausibility.

3.1. Our Approach

This study primarily evaluates post-hoc feature attribution methods. As previously men-
tioned, these algorithms seek to explain the output in terms of the significance of each input
feature, which allows for feedback on individual samples through a user study. These two
methods also have well-formulated open source packages, which make them more likely to
be implemented in the industry. Each method was fit on the train set of the respective
dataset and evaluated on the test set.

• LIME — An early model-agnostic method that randomly samples perturbations
around the input to create a linear approximation of the local neighbourhood [17].
The learned weights of each feature in the linear approximation is the assigned
importance.

• SHAP — An algorithm using Shapley values from cooperative game theory. View-
ing high and low probability as two competing entities, the method adds and removes
input features to measure the impact of each component on the model outcome [15].
This work specifically uses TreeExplainer [26].

Faithfulness will be evaluated with the diffAUC metric used in previous work [6]. Dif-
fAUC is computed as follows: for the list of feature importances produced by an XAI
method, features are iteratively removed from the input from most to least important. The
model is retrained and the F1 score is obtained after each removal. The f1 scores are plotted
over the features against a random ablation baseline. Then, the difference in AUC between
the methodical and random ablation is scaled by the number of features to produce a score
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in the range [-1, 1]. The more informative a feature importance ranking is, the faster the
F1 score is expected to decrease, so a lower score is better.

This metric is chosen as it uses global feature importance, which accumulates explanations
over all available data points. For SHAP and LIME, the feature importance of one feature,
feati is defined in Equation 3.1.

feati =

∑N
n=0 |win|

I
(3.1)

N is the number of samples in the test set, win is the importance of feati in the nth sample
as calculated by the XAI method, and I is the total number of features.

Plausibility was evaluated with lawyers via an online survey. The study proceeded with
11 lawyers over the three tasks, with each lawyer receiving 5 questions per XAI method, for
10 total. Some results from Section 4.2 indicate the length might have been too short, and
this should be revisited in future work. The samples were randomly chosen from the test set
for variety, although we generally kept a balance between positive and negative predictions.
Each lawyer only evaluated tasks where they had expertise.

For each sample, the lawyer was first shown the input and asked to make their own
prediction on the sample’s outcome. This allows them to read through the facts and build
their own reasoning, as well as give a measure of subjectivity. They were not told the
sample’s true outcome. Then, they were shown the model’s prediction and accompanying
explanation, and asked to rate how closely these aligned with their understanding of the
case. Every participant received verbal instructions on how to interpret the explainability
graphs outputted by each method before beginning the survey. A rating of 1 indicated
they disagreed with the model’s prediction and explanation, while a rating of 5 meant they
agreed with both completely. After rating, the participants were asked to give written
feedback on the explanation — for example, to list the feature(s) they disagreed with and
why. Requesting comments gave insight to the participants’ thought processes, as well as
how their reasoning aligns with one another. The questions alternated between the LIME
and SHAP outputs to limit bias towards one or the other. From the survey, there are three
main pieces of information: the expert’s predicted outcome, rating of the explanation
the model produced, and their written feedback. The inter-rater agreement for all of
these pieces was evaluated with Fleiss’ kappa and Krippendorff’s alpha. For the written
feedback, the features criticized are manually extracted and treated as options in a multi-
selection question, and only Krippendorff’s alpha is calculated with MASI distance, since
Fleiss’ kappa cannot be used with missing values. These agreements are another measure
of subjectivity - if the agreement is low, the task is more likely to be subjective to lawyers.

Finally, the plausibility is quantified as the statistical correlation between absolute error
(distance of model prediction from the true label) and the average explanation rating to
see if the quality of explanation relates to the model’s certainty. Intuitively, an explanation
should be less plausible as the model is more incorrect. For a correlation in the range [-1,
1], the perfect plausibility score is therefore -1. This metric prate is defined in Equation 3.2.

prate = corr(

N∑
i=1

|yi − f(xi)|, µsi) (3.2)

where N is the number of samples (in this survey, N = 5 for each XAI method), f(xi) is the
model’s prediction for xi ∈ [x1, x2, ..., xN ], µsi is the mean rating, and yi is the true label.
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Figure 1. Example explanation graphs shown to the annotators, corresponding to com-
ments in Table 6

4. Experiments

4.1. Experiment Setup

Datasets. This paper evaluates legal tasks from three different areas of law: personal injury,
intellectual property, and employment. There are three corresponding sets of historical legal
decisions, either court proceedings or internal cases, and all relevant information pertaining
to decision was annotated by subject matter experts into a tabular format. In this study,
the lawyers who annotated this data also volunteered for the survey, so they are verified to
have expertise in these specific tasks. The tasks are as follows:

• Personal Injury Negotiation (PIN) — For a personal injury dispute, predict
whether the total negotiated settlement amount will be above or below the median
average. Although the target is a continuous monetary value, the task was initially
defined as classification at the clients’ request.2

• Trademark Confusion (TC) — For a trademarks dispute case, predict whether
there is confusion or no confusion between two pieces of intellectual property (IP)
[27]. Lawyers chose five measures of similarity as the most important features [23].

2This dataset is not available for distribution due to its sensitive nature.
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Table 1. The dataset composition, including the number of features available for the
task, total number of cases, and distribution between positive and negative samples

Dataset # Features Positive/Negative Label Positive
Samples

Negative
Samples

Total

PIN 37 Above Average/Below Average 325 311 636
TC 5 Confusion/No Confusion 331 126 456
WC 12 Indep. Contractor/Employee 171 240 411

• Worker Classification (WC) — For an employee contracts dispute, predict
whether a worker hired by a company is an independent contractor or an employee.3

The distribution of different classes can be found in Table 1. All tasks are binary classifica-
tion, and the label of interest is referred to as the positive class. PIN is the most balanced
by design of the task, while the majority class of TC and WC comprise 78% and 58% of
their datasets respectively. Personal Injury Negotiation (PIN) is the only dataset made of
internal dispute claims, and are dependent on the firm’s internal decision making processes
alongside legislature or case law. Consequently, the data is not as consistent as those from
court trials, which only use prior case law. The PIN dataset is being re-annotated at the
time of writing. Also, a feature in WC ("Length of Service") was included in the model
and survey but later noted to be unimportant to the decision by the annotators, so this
dataset’s scores might be biased due to this spurious feature rather than poor plausibility.
The results are reported as is, and we discuss how bias and subjectivity can be identified
from the study in Section 4.2.

Model Settings. The model used for the survey is an XGBoost gradient-boosted deci-
sion tree trained with binary cross-entropy loss [28]. For tabular data, XGBoost models
achieve comparable or improved performance compared to deep learning for lower computa-
tional cost [29]. The XGBoost library includes a gain-based feature importance measure, but
it is a global explanation and does not provide feature importance for individual samples,
so there is still merit to adopting LIME or SHAP.

For each dataset, the data is divided into a 80:20 train:test split with stratified sampling
to preserve data balance. The tree is trained for 10 boosting rounds with a maximum depth
of 2, except for TC which used a maximum depth of 3 and 20 boosting rounds. These
settings were empirically shown to give the best performance, but the difference is most
likely due to TC having significantly fewer features.

The model performance on each dataset is summarized in Table 2. The F1 score has
a high variation between datasets, which is to be expected considering the differences in
data balance and consistency. Figure 2 shows the histograms of prediction probabilities for
the various test sets. While this is not a perfect indication of sample difficulty, predicted
probability is shown to demonstrate model confidence, which in turn might affect the survey
and plausibility scores. In TC and WC, for example, most predictions are between [0,0.2]
and [0.8,1.0], which shows that the model was more confident in its decisions compared to
PIN. However, the graph outputs on TC is highly skewed to the positive class — likely
because of the unbalanced classes preserved by stratified sampling.

4.2. Results and Discussion

The average diffAUC scores were taken over 25 trials to account for variations in the
random ablation baseline, and summarized in Table 3. Overall, each explainability method
improves over the random baseline, performing better than what was observed with image

3This dataset will be released separately in the near future.
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Table 2. The model’s performance results over all 3 datasets, reporting precision, recall,
accuracy, and F1 score.

Dataset Precision Recall Accuracy F1 Score

PIN 0.703 0.800 0.726 0.748
TC 0.876 0.955 0.870 0.914
WC 0.882 0.851 0.867 0.859

Table 3. DiffAUC metric summarized from the 3 datasets and the 3 explanation methods.

Dataset # Features Gain LIME SHAP

PIN 37 −0.205± 0.08 −0.247± 0.09 −0.236± 0.08

TC 5 −0.189± 0.13 −0.145± 0.13 −0.183± 0.13

WC 12 −0.297± 0.13 −0.284± 0.13 −0.326± 0.13
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Figure 2. Prediction probabilities of the model over the test set.
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Figure 3. Sample plots of F1 score over 1 trial, comparing the different feature impor-
tances to the random baseline. For TC, SHAP and GAIN are overlapped.

data [6]. However, their performance varies on different datasets. SHAP performs best
on WC, while LIME scores highest for PIN, and Gain on TC. It seems like Gain’s feature
importance is most accurate on TC, but inconsistencies start to show with higher dimen-
sionality data — the F1 score plot of Gain fluctuates significantly for PIN, returning to the
original F1 score with half of the features removed. There are also minor fluctuations in
SHAP and LIME, although they are visually smoother. Similar to findings from existing
work [10], the faithfulness of these XAI methods are inconsistent on decision tree models.

The inter-rater agreements for the survey questions are reported in Table 4. The PIN
lawyers had the highest agreement for explanation rating, but lowest when predicting the
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Table 4. Inter-rater agreements over all multiple choice questions in the survey, measured
with Krippendorff’s alpha and Fleiss’ kappa. For explanation ratings, the mean rating
is also reported with the agreements.

Outcome Prediction
Dataset Krippendorf’s Alpha Fleiss’ Kappa Mean Rating

PIN 0.18 0.16 -
TC 0.35 0.33 -
WC 1 1 -

Explanation Rating
Dataset Krippendorf’s Alpha Fleiss’ Kappa Mean Rating

PIN 0.24 0.22 4.2
TC 0 -0.04 3.37
WC 0.02 0 4.28

Table 5. Inter-rater agreements for features mentioned in the comments. The mean #
of features indicates the number of features criticised per comment, per rater.

Dataset Krippendorf’s Alpha Mean # Features

PIN 0.03 0.5
TC 0.28 0.8
WC 0.26 1.03

outcome. This might be due to the subjectivity of the task — while there is a higher tolerance
for what is considered a plausible explanation, it is difficult to predict the outcome. With
TC, there was marked disagreement in explanation rating, but relatively strong agreement
when predicting the outcome. Finally, WC achieved perfect agreement on predicting the
outcome, but explanation rating had similar agreement values to TC.
This behaviour can be explained with the written feedback. Two comments from each
survey are provided in Table 6, with specific features being criticised highlighted in the
text. Upon closer inspection, disagreement in explanation rating does not necessarily reflect
subjectivity. For example, in WC-1, all the lawyers mention the "Length of service" feature,
but this sample had disagreement in the explanation rating. This was likely caused by
differences in understanding the rating system rather than true disagreements. As another
example, WC-2 in Table 6 is interesting, because the model made a mistake on this sample.
However, the experts rate the agreement strongly, and one person noted that the explanation
was "pretty accurate." Either the annotators themselves were overly confident in the model,
or the sample was an outlier in the dataset.

To distinguish between the two possibilities, the inter-rater agreement on the features
criticized in their written feedback is considered as another measure of subjectivity, and
reported in Table 5. With this new metric, WC-2 scores low since all lawyers commented on
different features. PIN, which was mentioned to be more subjective, now scores the lowest,
while WC and TC score similarly. This measure is more intuitive to defining subjectivity
when the annotators criticize an explanation to the same degree but for different reasons.
However, this metric discards more general comments, like those for TC-2 in Table 6.

The plausibility metric calculations are included in Table 7. Over all the legal tasks,
SHAP has better plausibility than LIME. PIN has the most pronounced difference
between SHAP and LIME, although the reason is not clear, and TC had the least. TC also
has the lowest correlation overall, while WC has the highest. This is likely due to cognitive
bias, considering their agreements in predicting the outcome, or the higher probability
confidence in the model predictions. Aside from one false negative, the absolute error in
the other samples were low, which suggests there was not enough variance for a proper
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Table 6. Examples of survey responses across the various tasks. The rating is the average
rating across the annotators for that sample’s explanation quality.

Example # Rating Comments

PIN - 1 3.25 Surprised age wasn’t a factor
Would have assumed that longer-lasting injuries and psychological diag-
noses would contribute more to the prediction probability than shown in the
model.
Thought occupational status would increase the value.

PIN - 2 4.25 does income lower value?
Matches my judgement of the case!
Long standing was surprising as to how much it affected the prediction

TC - 1 3.0 Conceptual similarity carried more weight than expected.
Surprising that it is confusion given the lack of similarity. Also second graph is
counterintuitive. Lack of visual and conceptual similarity are the same but
point in different directions?
The conceptual similarity looks really high although it’s the same value as the
visual and phonetic similarities (2).

TC - 2 4.0 Visual similarity seems higher than reflected in the first chart
Low similarities = unlikely that there is confusion
This one could also go either way.

WC - 1 4.0 Length of service was not a big determining factor. Employee could work for
a short period of time.
I don’t think length of service should be contributing strongly either way
This might be a reoccurring theme, but I am still not aware that length of
service is that determinative of a factor (I could be wrong though). However,
everything else is pretty spot on.

WC - 2 4.75 I agree that "hirer setting work hours but not when work is done" is
more in the red direction than sample 1 "hirer only for setting work hours".
But I would imagine that hirer setting work hours would be in the blue more and
if worker only it would be more in the red?
The only factors that don’t contribute to the person being considered an em-
ployee are the fact that they have no supervision, and don’t have to wear a
uniform. The rest should all contribute to employee
This one is pretty accurate. Although, the only thing I wanted to note is that
"who sets the work hours", might be a bit too biased towards contractors

Table 7. The calculated prate values. Correlations are reported over all 10 questions,
then for the 5 individual samples of each explanation method.

Dataset prate,lime prate,shap prate,overall

PIN 0.38 -0.82 0.07
TC -0.65 -0.89 -0.72
WC 0.47 0.029 0.40

correlation. This survey would benefit from a second run with more samples and a simpler
format, eg. only rating explanations, in order to get a more stable measure of plausibility.

5. Conclusion

Explainable AI is an important consideration when implementing AI systems in legal
tasks. The ability to explain a decision leads to higher trust in the AI system, which in turn
brings about further adoption of the technology overall. This work evaluated explanation
correctness of XAI methods on three legal tasks from various areas of law. We evaluated
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two post-hoc explanation methods, LIME and SHAP, with a user study involving subject
matter experts and quantitative analysis. Similar to existing work, it was concluded that
explanation faithfulness can vary depending on the data, but all are significantly more
informative than a random baseline. Different areas of law can vary in subjectivity, so this
work also proposed quantitative measures of subjectivity and bias. From the user study,
we obtained measurements of plausibility with a newly proposed metric, and concluded
that SHAP is consistently more plausible than LIME regardless of subjectivity. However,
due to the inconsistent faithfulness results, it is recommended to exercise caution with
these methods. We hope that this work brings attention to the importance of evaluating
explainable AI for legal data, and will lead to further exploration in the future.
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