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Abstract

This paper proposes a new method for uncovering discrimination in decision making
systems with continuous value outcomes when lacking the protected attribute values. We
demonstrate our method over race discrimination using name and surname proxies. Also,
we use a new method for estimating uncertainty in the disparate treatment evaluation
to allow for better judgment when using imprecise proxies for the protected attribute.
We carry out tests using synthetic data.
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1. Introduction

There is increased public interest today in ensuring that the services provided by com-
panies and governments meet the values of fairness and equality between the different de-
mographic groups of society [1]. Not only is this task complicated by decision-making al-
gorithms which are increasingly difficult to explain [2], but concerns and restrictions on the
collection of personal data lead to sensitive attributes (race, religion, sexual orientation, etc.)
being deleted or never collected at all, even though they are essential to evaluate discrimi-
nation between different groups. Therefore, we need to estimate the disparity of treatment
between groups of individuals without knowing who belongs to a protected group. The
solution is to use a proxy variable that correlates with the protected attribute [3][4].

It is therefore necessary to set up a system for evaluating the disparity of treatment
which performs well when: (1) Instances of individuals belonging to the minority group
are unknown due to the missing protected attributes; (2) The minority group represents
a small proportion of the population; (3) The treatment model or decision-making process
is completely inaccessible to the people doing the fairness assessment; and (4) There is
uncertainty about the correlation of the proxy with the protected attribute. In addition,
given the competitive conditions in which private companies operate, we must also assess
the certainty of the estimation of the disparity of treatment, to allow informed decision-
making by companies to minimize disparity. Thus our main contributions are (1) Measuring
uncertainty in disparate treatment measures when using poorly-correlated attributes like
surname and name, and (2) Proposing an easy framework for estimating disparity while
using familiar fairness metrics like demographic disparity.

This paper is structured as follows. Section 2 will define important metrics from the
literature. Section 3 will present our proposed solution, the Bayesian Tarnet. Section 4 will
present experiments using our solution, and section 5 will discuss the results obtained.
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2. Related Work

2.1. Disparity estimation

A number of approaches exist for the evaluation of disparity. They are used, for instance,
to measure the effectiveness of a drug or the effect of certain policies [5–7]. Here, the term
“treatment” refers to the action taken or the effect induced before observing the result,
“outcome” is the effect induced by the treatment, and “disparity” refers to the difference
in the outcome between different groups. However, sensitive data about the individuals are
often missing and the amount of variables that come into play in the end result is large,
making it difficult to accurately calculate the effect belonging to a minority group has on
the outcome of the treatment. Many fairness metrics have been used to estimate disparity
of outcomes of a treatment on minority groups, both at the group and individual levels [8].

2.1.1. Definitions

Demographic Parity (DP) [9] considers a treatment fair when the probability of a
certain outcome conditional to the protected attribute is equal for both protected groups:

P (y|t = 0) = P (y|t = 1), (2.1)
where y is the treatment decision or outcome (the treatment) and t is the protected attribute,
with t = 1 representing the majority group and t = 0 the minority group.

Average Treatment Effect (ATE) measures how the treatment will vary if we modify
the protected attribute from t = 1 to t = 0. Given n individuals ATE is defined as:

ATE =

∑
[y|t = 1]−

∑
[y|t = 0]

n
. (2.2)

While fairness metrics at the group level are popular, they can lead to the Simpson’s
paradox in which varying the number or granularity of comparison groups can lead to contra-
dictory fairness results and unfair conclusions[10]. Therefore, individual fairness conditions
are generally considered more representative.

Individual Treatment Effect (ITE) measures the difference in treatment when we
change only the value of the protected attribute t of an individual, without changing their
non-protected attributes x. Thus, the ITE τ(x) of individuals with attributes x is:

τ(x) =

∑
[y|x, t = 1]−

∑
[y|x, t = 0]

n
, (2.3)

However, the ATE and ITE define the disparity as a difference between two average treat-
ments. We can also define it as difference between two probability distributions.

Demographic Disparity (DD) [9] measures the disparity in the probability that a
treatment will be chosen for individuals by conditioning on the protected attribute:

DD = P (y|t = 1)− P (y|t = 0). (2.4)
When the protected attribute can take more than two values, t ∈ 0, ..., tn, the metric is
computed pairwise on all combinations of values:

DDij = P (y|t = ti)− P (y|t = tj). (2.5)

2.1.2. Estimation methods

To estimate the ITE, one of the simplest methods is to find several individuals with the
same attributes x and separating them into groups for t = 1 and t = 0 before calculating
τ(x). One problem with this method is that the set of features x can be very large and
its values very precise, which means there will not be enough (or any) individuals with the
same values of xin the population for this evaluation. Even if many instances of the same
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x are available, the minority value of t is rare and some values of x will have few (or no)
individuals of that class. Two methods are used to overcome this problem.

Propensity Score (PS) deals with the rare occurrences of x by assigning to each
individual a score PS(t|x), which is a discrete value in a predefined range assigned so that
if two individuals have similar vectors x they will have similar PS values. This score is
used to group similar individuals together and to calculate τ(x) for the group. This updates
equation 2.3 as:

τ(x) = P (y|gi, t = 1)− P (y|gi, t = 0)
gi = ki−1 < PS(t|x) ≤ ki

(2.6)

where gi represents a group of individuals with propensity scores within a range ki−1 to ki.
Regression Adjustment tackles the problem of not having enough individuals with the
rare value of the protected attribute by estimating the effect of the protected attribute on
the outcome. The idea is to estimate the probability distribution of the result conditioned
on the protected attribute and on the other attributes, P (y|x, t).

The problem with these methods is that they attempt to solve the issues of ITE by relax-
ing the comparison to a group of similar people instead of an individual, which challenges
the notion of individual fairness and reintroduces the risk of Simpson’s paradox.

Conterfactual Regression (CFR) uses a deep neural network (DNN) to estimate the
ITE using observational data [11]. The network learns to generate a similar representation
for similar vectors x, and then uses that representation to estimate different outcomes based
on the protected attribute value of each individual. This allows the method to simultane-
ously find similar individuals for comparison and discover the disparity between groups. The
Tarnet architecture implementation of CFR is composed of two main parts. The first is the
shared representation network which learns a shared representation of similar people from
different groups. That network minimizes G(xi), the distance between the representations
of an instance xi conditional to each possible value of t [12, 13]:

G(xi) =

n∑
j=1

IPMG({ϕ(xi)}i:ti ̸=j , {ϕ(xi)}i:ti=j), (2.7)

where IPM represents an integral probability metric like the Wasserstein distance[14], ϕ is
a function that generates a shared representation of xi, and n is the number of values the
protected attribute can take. The second part of the CFR is composed of multiple branches,
each an independent network. Depending on the protected attribute value of the instance,
the shared representation of the individual is sent to one specific branch. Each branch thus
learns how each protected group is treated independently from the others.

2.1.3. Uncertainty estimation

Monte Carlo dropout (MC): Dropout [15] is a popular method of neural network
regularization, which works by ignoring random nodes with a certain probability. Normally,
dropout is applied at training time, while at testing time all nodes are used. Therefore,
the network is deterministic during testing: given a test sample, it will always make the
same prediction. For MC dropout [16], the dropout is applied at both training and testing
time. This means that the the prediction given a test sample will vary stochastically. MC
dropout interprets these stochastic predictions as samples from a probability distribution
on the value of the output variable being predicted. We can also use this distribution to
estimate the uncertainty on the network prediction [17].
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2.2. Proxy model: Sensitive attribute estimation

To estimate the disparity between different protected groups, we need to consider the
values of the individuals’ protected attributes. However, these are typically missing from
datasets. The most popular solution is to estimate them using proxies. One of the best
methods to do this is the Bayesian Improved Surname Geocoding (BISG) [18] which uses
surname and geocoding to estimate the protected attribute with Bayesian statistics. Given
a set of n people with gi their geolocation, i, si their surname, and ri their unknown race:

P (ri|si, gi) =
P (gi|ri)P (ri|si)∑n
i=1 P (gi|ri)P (ri|si)

(2.8)

One of the main limitations of this method is that it relies on collected data, namely
statistics on race given geolocation and name. While the relationship between name and race
is easily available, there are many regions for which racial makeup has not been measured,
and thus this method is not usable. Consequently, we decided to use a more generic method
which relies only on the name to predict the race [19]. This method uses an LSTM that
takes in the sequence of character embeddings of a name and predict its ethnicity. It was
trained on the first names and last names from the 2010 US Census [20].

2.3. Important metrics

Wasserstein Distance Metric (WDM) is used to measure the difference between two
probability distributions in the previous metrics. Let P be a distribution associated to a
random variable X, such that for a subset of values A ⊆ IR, we have Pr{X ∈ A} = P (A).
The cumulative distribution function of P is then

FP (x) := Pr{X ≤ x} =

∫ x

−∞
P (dx), (2.9)

where the inverse distribution function of P defined over the interval (0, 1] is
F−1
P (u) := inf{x : FP (x) = u}. (2.10)

For 1 ≤ p ≤ ∞, the p-Wasserstein metric Wp between two probability distributions P and
Q over IR. is defined using the inverse cumulative distribution function:

Wp(P,Q) :=

(∫ 1

0

∣∣∣F−1
P (u)− F−1

Q (u)
∣∣∣p du)1/p

, (2.11)

This probability distance metric has many interesting properties [21][22] such as:

• scale sensitivity: Wp(cP, cQ) = |c|β Wp(P,Q), where β > 0 and c > 0 are constants;
• sum invariance: Wp(A + P,A + Q) ≤ Wp(P,Q), where A is another probability

distribution.
• unbiased sample gradients: the expected gradient of the sample loss equals the

gradient of the true loss when using this metric as a loss function during training in
gradient descent [21].

Unlike other metrics like the total variance 1
2

∫
|P (X)−Q(X)| which only takes into account

the probabilities of the outcomes for each distribution, WDM uses the inverse distribution
function, which allows it to consider both the probability and the distance between various
outcomes. See [14] for more details.

Relative Standard Deviation (CV) is a metric used to measure the dispersion in the
prediction of N outcomes ŷi relative the mean outcome value µ:

CV =
100

µ

√∑n
i=1(ŷi − µ)2

N
. (2.12)
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Mean Absolute Percentage Error (MAPE) is used to evaluate model performance
in a regression task by estimating the relative error between the N predicted outcomes ŷi
and the true outcomes yi.

MAPE =
1

N

N∑
i=1

∣∣∣∣yy − ŷi
yi

∣∣∣∣ (2.13)

3. Methodology

Our main contribution is providing a method to evaluate disparity along with an uncer-
tainty measure when the protected attributes are estimated by a proxy. We accomplish this
by adding uncertainty estimation on the Tarnet architecture and the name proxy model
using MC dropout method.

3.1. Bayesian Tarnet architecture

Our architecture, presented in Figure 1, is heavily inspired by the works [12, 13]. The
Tarnet architecture was adopted but modified to support more than two values of the
protected attribute. Uncertainty estimation was also added to the network as described in
[16] by adding dropout between each weight layer hi. We call our resulting network the
Bayesian Tarnet (BT).

(a) Bayesian Tarnet (b) Bayesian name proxy

Figure 1. (a) Bayesian Tarnet: Architecture of the disparity estimation model where x

denotes the non-protected attribute vector, t denote the protected attribute, hi repre-
sents each branch learning the treatment effect for each protected attribute. (b) Bayesian
name proxy: The name proxy model build in MC dropout fashion. r is represents the
proxy value and t the predicted protected value.

The first component in Figure 1 is the layer ϕ which learns the shared representation of
individuals across the different protected groups. This layer is regularized by an IPM that
measures the distance between the representations of an instance xi with every combination
of values of t, as described in equation (2.7). This allows the model to better generalize,
especially when the classes t are imbalanced [12]. Next, the output of ϕ is sent into multiple
treatment layers hi, and each layer has a different value of the protected attribute t appended
to it from the set of n possible values the attribute can take. Each layer learns the treatment
for a single protected attribute value. In our implementation, the representation layer ϕ is
composed of 2 dense layers with an input dimension of length of the x feature vector and
an output of 20. Each treatment layer hi is composed of 3 dense layers with an input of 20
and output of 1. The input t is only used to funnel the output ϕ(x) to the correct hi layer.
There is a 0.1 dropout between each dense layer of hi and no dropout between the layers of
ϕ. Each hidden dense layer has a tanh activation function. L is the loss function.

To uncover disparity as well as uncertainty using a proxy we propose a new way of
training this type of model where we combine our BT model with a bayesian proxy model.
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In this case, the name proxy model of section 2.2 during training built with dropout in
the mc dropout fashion. The proxy model will output the protected attribute prediction t
and the BT uses it to make predictions. The bayesian proxy model output will reflect the
uncertainty of the proxy and it will be learned by the BT model and taken into account in
the uncertainty of the final outcome.

Once the BT model has been trained to differentiate between different treatments depend-
ing on the protected attribute value t, we can use it to make predictions on the treatment of
a new instance xi with an unknown t by predicting its treatment for each possible value of
t. This allows us to measure the DD for this new individual using equation (2.3). Moreover,
since we use MC Dropout, we can also estimate the uncertainty on this outcome.

(a) Training mode (b) Testing mode

Figure 2. (a) Training mode: the BT model is used in conjunction with proxy model.
(b) Testing mode: the model is used to make a new prediction on an individual without
protected attribute information.

3.2. Lower and upper bound on the disparate treatment

The computation of DD in equations (2.4) and (2.5) takes the difference between two
probability distributions given the protected attribute. Since these distributions are uncer-
tain when using a proxy, we propose minimum and maximum disparity (MMD) as a
way to estimate bounds over the difference while taking into account the uncertainty over
each probability distribution.

Since we use MC dropout during testing, n tests with the same set of input values xi ∈ X
will lead to a distributions of outcomes P1(X), ..., Pn(X). Using these distributions, we can
calculate a mean distribution Pµ(X) and a standard deviation distribution Pσ(X):

Pµ(X) = 1
n

∑n
i=1 Pi(X), Pσ(X) =

√∑
(Pi(X)−P̄ (X))2

n . (3.1)

To derive an upper bound (up) and lower bound (low) for the mean distribution, we simply
use Pµ(X) and Pσ(X) accordingly:

Plow(X) = Pµ(X)− Pσ(X), Pup(X) = Pµ(X) + Pσ(X). (3.2)
Once we have upper and lower bounds for a probability distribution, we can use them to
obtain the lower and upper bounds of the difference between two probability distributions
with known bounds P (X) = {Plow(X), Pup(X)} and Q(X) = {Qlow(X), Qup(X)}, such as
the two distributions to compute DD:

DDlow(X) = min{Plow(X)−Qup(X), Qlow(X)− Pup(X)},
DDup(X) = max{Plow(X)−Qup(X), Qlow(X)− Pup(X)}. (3.3)

where DDlow and DDup represent the lower bound and upper bound for the demographic
disparity.

3.3. Synthetic dataset

We created a synthetic dataset generator to test our model. This allows us to easily adjust
the dataset using hyper-parameters to simulate certain conditions. It notably allows us to
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test the reliability of the model in conditions were the proxy e presents low correlation with
the protected attribute t, and also in conditions where the protected classes are imbalanced.
These conditions happen often in practice as minority groups represent a low percentage
of the population and it is difficult to find proxies that are readily-available and highly-
correlated with the protected attribute. Consequently, our dataset generation has four
hyper-parameters. The first is the percentage of each protected group, denoted pt=i, and
the second is the relationship between the proxy and the protected attribute, ct. The
proxy value is generated by taking the generated correct protected value and swapping
it to another random protected attribute value with rate ct. For example, a correlation of
ct = 0.75 means that the proxy is the protected attribute 25% of the time and is changed the
other 75%. The third hyper-parameter disp is used to create disparity between the different
protected groups. It is a number representing the mean treatment value between each
group. For example, disp = [0, 100, 200] means that there are three groups and individuals
in each one are assigned treatment values randomly distributed around a mean value of
0, 100, or 200. The final hyper-parameter is a noise parameter Ni, which adds noise in
our dataset by randomly switching the feature vectors x of two individuals (but not their
protected attributes, proxies, or treatments) with probability Ni. Combining together all
these parameters, the synthetic data generation system is illustrated in Figure 3, and a
sample of the dataset is given in Table 1.

Table 1. A sample of the generated dataset for the regression task. The columns Xi,
i = 1, ..., k represent the features of x where k is the dimension (20 in our case), t is the
value of the protected attribute, e is the value of the proxy for the protected attribute
and Yt is the outcome given each of the n values of t.

X0 X1 X2 ... Xk t r Yt=0 Yt=1 ... Yt=n

0.2 -0.1 -0.5 ... -0.3 0 1 100 130 ... 180
0.3 0.2 0.4 ... 0.7 1 0 40 100 ... 300
... ... ... ... ... ... ... ... ... ... ...
-0.1 0.3 0.1 ... 0.6 2 1 230 200 ... 90

(a) Synthetic data generation (b) Synthetic proxy model

Figure 3. In (a), x represents the generated input feature vector. Values for the protected
attribute t are generated according to their proportions in rt and then used with the
parameter ct to generate the proxy values r. This results in an intermediary set of
features x’ which are used to calculate Y and then swapped randomly according to the
parameter Ni. In (b), The synthetic proxy model generates the protected attribute given
the proxy value r according to the correlation ct.

4. Experiments

4.1. Method

Training was done for 80 epochs with Adam optimizer, a learning rate of 0.001 and a
mean absolute error loss. During testing, for each feature vector input to the network, all
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protected attribute branches were used simultaneously to estimate the different treatments.
Hence, a different outcome was estimated for each person depending on the value of the
protected attribute value. The test was repeated 100 times using MC dropout to obtain
a different outcome each time. Consequently, an estimation of the disparity along with an
uncertainty measure could be computed.

In result Tables 3 and 5, DDTrue represents the true DD, DDPred represents the predicted
DD by the algorithm, DDlow represents the lower bound and DDup represents the upper
bound. MAPE is the performance metric, CV is the uncertainty metric, and C̄V represents
the mean uncertainty.

In Figures 4 and 5, portion (a) shows the residuals between the correct outcome and
the prediction as well as the uncertainties for the prediction outcome of the model for each
protected attribute. The residuals correlate with the uncertainty around the prediction
and thus demonstrate the performance of the model. Portion (b) shows the lower bound
distribution outcome, the higher bound distribution outcome, the estimated distributions
and the real distributions for each protected group.

4.2. Assessing disparity using proxy reliability and protected attribute proportion

The experiments with the synthetic data were done by varying the percentage of the
protected groups rt and the predictive power of the proxy ct. We study the performance of
our model in rediscovering the correct disparity with an uncertainty measure. Twelve tests
were done. Each test tries to measure the performance in a certain situation. These tests
and situations are summarized in Table 2. To summarize, we consider cases where the proxy
is a poor, average, or excellent predictor of the class (low, medium, or high ct), where the
classes are balanced or imbalanced (high or low rt), and where the disparity between classes
is small or important (low or high disp). In all cases we will use three classes, labeled a and
b for the minority classes and c for the majority class.

Table 2. Experimental setups with twelve different situations. Each situation has a
different set of hyper-parameters representing different proxy correlation, proportions of
protected groups and disparity. ↑ means high, ↓ means low and - means mild.

Situation Description ct rt disp

a b c a b c

1 ↓ ct ↓ rt ↓ disp 0.1 0.05 0.3 0.65 0.0 100.0 200.0
2 ↓ ct ↓ rt ↑ disp 0.1 0.05 0.3 0.65 0.0 500.0 1000.0
3 ↓ ct ↑ rt ↓ disp 0.1 0.3 0.3 0.4 0.0 100.0 200.0
4 ↓ ct ↑ rt ↑ disp 0.1 0.3 0.3 0.4 0.0 500.0 1000.0
5 - ct ↓ rt ↓ disp 0.5 0.05 0.3 0.65 0.0 100.0 200.0
6 - ct ↓ rt ↑ disp 0.5 0.05 0.3 0.65 0.0 500.0 1000.0
7 - ct ↑ rt ↓ disp 0.5 0.3 0.3 0. 0.0 100.0 200.0
8 - ct ↑ rt ↑ disp 0.5 0.3 0.3 0.4 0.0 500.0 1000.0
9 ↑ ct ↓ rt ↓ disp 1.0 0.05 0.3 0.65 0.0 100.0 200.0
10 ↑ ct ↓ rt ↑ disp 1.0 0.05 0.3 0.65 0.0 500.0 1000.0
11 ↑ ct ↑ rt ↓ disp 1.0 0.3 0.3 0.4 0.0 100.0 200.0
12 ↑ ct ↑ rt ↑ disp 1.0 0.3 0.3 0.4 0.0 500.0 1000.0

4.2.1. Result

The objective of the first experiment is to test our BT model in different situations
with the various combinations of ct, rt and disp described in Table 2. The goal is to
see the performance in predicting the real disparity DD and estimating lower and upper
bounds DDlow and DDup. The results presented in Table 3 show that a lower value of the
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probability ct leads to higher values of the MAPE and the CV , which indicate that the
model struggles in predicting the true disparity. The difference between DDlow and DDup

increases also, further indicating the model struggles when using a poorly-correlated proxy.
The distribution of classes also affects the uncertainty metrics. For the same values of ct
and disp, balanced classes show lower values of MAPE and CV and a smaller difference
between DDlow and DDup, indicating the system is more confindent in its prediction of
DD. The disparity disp has the effect of accentuating the uncertainty about the disparate
treatment, which is the result of the prediction. As the disparity gets higher, the values for
the outcome are high as well which in return affects the MAPE and the CV in the same
way and hurts the performance of the model to identify closer DDlow and DDup bounds.

As an example, Figure 4 shows the results of Situation 1, one of the more challenging
ones. As explained, the uncertainty on the DD prediction is a lot higher for class a, the
much smaller minority class at 0.05% of the dataset, but smaller for class b and very small
for class c, the majority class. The predicted outcomes for each of the three classes are also
very close to their real values, and well within the lower and upper bounds.

Table 3. Experimental result of the disparity estimation for each situation described in
2

S DDTrue DDPred DDlow DDup MAPE CV C̄V

a-b a-c b-c a-b a-c b-c a-b a-c b-c a-b a-c b-c a b c a b c

1 97.9 196.7 98.7 87.5 184.4 96.9 18.3 79.0 38.5 170.5 290.3 158.4 1.0 0.2 0.1 3.2 0.5 0.4 1.3
2 497.9 996.7 498.7 493.1 989.4 496.4 356.3 741.1 320.6 629.9 1237.8 672.1 1.7 0.0 0.0 5.2 0.1 0.1 1.8
3 97.9 196.7 98.7 96.1 185.4 89.3 56.4 132.8 31.9 143.6 237.9 149.3 0.2 0.3 0.3 0.2 1.3 0.6 0.7
4 497.9 996.7 498.7 455.3 956.9 501.6 375.0 812.2 313.9 535.7 1101.6 689.3 0.3 0.1 0.1 0.3 0.1 0.1 0.2
5 97.9 196.7 98.7 92.4 185.5 93.1 50.0 131.7 47.1 137.7 239.4 142.0 0.4 0.1 0.2 0.5 0.5 0.8 0.6
6 497.9 996.7 498.7 477.8 961.4 483.7 393.6 810.3 345.1 561.9 1112.6 622.2 0.7 0.0 0.0 2.1 0.1 0.1 0.8
7 97.9 196.7 98.7 96.8 195.4 98.5 60.0 149.0 51.6 135.1 241.7 146.6 0.2 0.2 0.2 0.3 0.8 1.0 0.7
8 497.9 996.7 498.7 508.1 967.1 458.9 436.3 837.6 296.6 580.0 1096.6 621.3 0.3 0.1 0.1 0.4 0.1 0.1 0.2
9 97.9 196.7 98.7 101.2 193.6 92.4 55.8 142.0 46.0 148.6 245.3 142.0 0.1 0.1 0.1 0.5 0.8 0.7 0.7
10 497.9 996.7 498.7 505.3 968.6 463.4 428.5 850.8 323.1 582.0 1086.4 603.6 0.4 0.0 0.0 0.7 0.1 0.1 0.3
11 97.9 196.7 98.7 98.9 198.6 99.7 58.2 148.5 53.0 142.3 248.6 149.1 0.1 0.2 0.1 0.3 0.7 0.4 0.5
12 497.9 996.7 498.7 484.9 983.5 498.6 420.3 866.3 354.6 549.6 1100.7 642.6 0.7 0.0 0.0 0.3 0.1 0.1 0.2

(a) Residuals and uncertainties (b) Distributions

Figure 4. Performance of the BT model in situation 1 (low ct, low rt and low disp) as
example.
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4.3. Assessing disparity using the name as a proxy

In this second experiment we test the performance of assessing the disparity using the
first name and last name as a proxy for the protected attribute. First, we begin by training
the bayesian name proxy model of section 2.2 using the data from the 2010 US Census [20].
To remain coherent with our previous experiment which used three protected groups, we
limit the model to predicting three ethnicities, Whites (w, formerly majority class c), Blacks
(b, for the extreme minority class a), and Hispanics (h, replacing minority class b). Table
4 shows the performance of the LSTM in predicting each ethnicity based on their first and
last names. We replace the protected attribute value in our dataset (situation 3 in Table
2) with names chosen randomly from the 2010 Census dataset according to the ethnicity to
which they belong. We also test the performance when there is noise Ni in the data.

4.3.1. Result

The results are given in Table 5 for one situation with an increasing level of noise. When
the noise in the data is low, CV is also low which indicates that the name acts as a good proxy
for the protected attribute. However as Ni gets higher, the uncertainty in the predicted
disparity gets larger as well. This means that the performance in predicting narrow bounds
for the disparity is dependant on the performance of the proxy model in predicting the
correct outcome. However, the increase in uncertainty is not linear to the increase in noise.
Looking at C̄V for instance, it does increase linearly for low values of noise, for Ni from 0.0
to 0.4, but then doubling the noise to Ni = 0.8 leave C̄V virtually unchanged.

The illustration of Figure 5 is coherent with that of Figure 4. The more rare classes again
have higher uncertainty bounds while the majority class w has the thighest uncertainty
bounds. Nonetheless, the predicted outcomes are very close to the real outcomes.

Table 4. Performance of the proxy model in predicting the protected attribute value
given the last name and first name.

Ethnicity Precision Recall F1-score
White .95 .72 .82
Black .15 .49 .23
Hispanic .38 .80 .52
Mean .49 .67 .52

Table 5. Experimental result of the disparity estimation for each situation 1 described
in 2 using first name and last name as a proxy with increasingly higher noise (Ni) value.

Ni DDTrue DDPred DDlow DDup MAPE CV C̄V

b-h b-w h-w b-h b-w h-w b-h b-w h-w b-h b-w h-w b h w b h w

0.0 97.9 196.7 98.7 91.5 184.7 93.2 53.0 138.8 49.4 130.9 230.6 140.0 0.3 0.1 0.1 0.3 0.5 0.3 .36
0.2 97.9 196.7 98.7 97.5 194.4 96.9 60.6 148.9 51.7 135.6 239.9 144.0 0.8 0.8 0.5 0.3 0.9 0.3 .5
0.4 97.9 196.7 98.7 92.0 200.5 108.5 53.0 153.0 58.4 132.5 247.9 159.8 1.4 1.3 0.7 0.3 0.9 0.6 .6
0.6 97.9 196.7 98.7 73.2 182.0 108.7 43.6 141.2 66.1 104.1 222.7 151.4 1.5 1.3 1.2 0.6 0.5 0.2 .43
0.8 97.9 196.7 98.7 103.4 187.7 84.3 65.0 147.0 46.9 141.9 228.3 128.7 2.3 1.6 1.3 0.5 1.2 0.1 .63

5. Discussion

In the first experiment, the results show that the model is able to perform well in con-
ditions where the proxy is highly correlated with the protected attribute and the number
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(a) Residuals and uncertainties (b) Distributions

Figure 5. Performance of the BT model using the name proxy with Ni = 0.0.

of instances for each protected attribute is balanced. However, as the correlation ct and
the proportion rt gets lower, the performance predictably deteriorates as the uncertainty
CV gets higher and the difference between the bounds DDlow and DDup gets larger. This
indicates that we can use the model’s uncertainty to know when the disparate treatment
assessment is reliable. This in turn can help decision-makers plan to either seek out more
information to correct the model when the uncertainty is high and the bounds are wide, or
to improve their business practices when certainty about the disparity is high. Future work
will seek to determine the threshold at which the disparity value CV can be trusted to call
a treatment discriminatory.

In the second experiment, we test the performance of the model using the individuals’
names as a proxy for their ethnicity, a popular and readily-available proxy choice. We show
that our method is very reliable when using this proxy, which we can see by looking at C̄V
which tend to be low (around 0.5). Moreover, while the performance of our BT degrades
when noise is introduced in the proxy, which was expected, this degradation seems to be
bounded at high noise levels, which is a very positive result. Further study will explore this
phenomenon at greater depth.

6. Conclusion

In this paper, we propose and analyse a new way to evaluate disparate treatment based
on protected group status, as well as the uncertainty on this disparity when an imprecise
proxy is used instead of the protected attribute. We also propose a new metrics to derive
the lower and upper bounds for the disparity. Our result show that our model is able to
achieve reliable disparity estimations in situation where the correlation of the proxy with
the real protected attribute is low and the proportions of protected classes are imbalanced,
and that it is able to correctly model the uncertainty around the disparity estimation in
those situations. We also demonstrate that our method can reliably use the first and last
name as a proxy for the protected attribute to uncover disparity in treatments.

In addition to the directions for future work mentioned in Section 5, we also plan to focus
next on modelling confounding effects. It could be the case that an apparent discrimination
is due to an unseen variable that influence both the outcome y and the features x while also
depending on the protected attribute t, which make it seem as if y is dependent on both x
and t when it really depends on the missing variable. Future work will explore how to take
this possibility into account in our system.
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