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Abstract

Flashover phenomena accompanying rapid �re propagation in a room occur when the
hot smoke from a �re accumulates in the room's upper part. This phenomenon presents
one of the most frightening and challenging situations for �re�ghters. A typical approach
to mitigate and prevent the impact of �ashover is to train �re�ghters to monitor a few
common indicators of �re in pre-�ashover time, such as moving dark smoke, high heat,
and �re rollover. In actual compartment �re events, these pre-�ashover indicators are
hard to recognize. Furthermore, determination of exact �ashover time is di�cult by just
observing �re activities while there are other vital rescue duties to do by �re�ghters.
Hence, automatic detection and prediction of �ashover in real time are of paramount
importance to save lives and reduce the cost of damages. Flashover prediction is still an
open area of research by �re safety experts. Deep convolutional neural networks are cur-
rently dominating the area of computer vision, and these state-of-the-art deep learning
models have been successfully used in various applications, including object detection,
localization, and segmentation. Unlike previous studies that use RGB images, sensors,
and gauges, we utilized the power of deep learning techniques to detect �ashover from
image sequences captured by thermal infrared (IR) cameras. Our experimental results
indicate that not only our proposed approach can detect �ashover in IR video data with
high precision, but it can detect �ashover a few frames before happening. Our technique
is a promising approach that can be used in future for �ashover prediction in real time.
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1. Introduction

A �re that started in a room could grow and spread to the building. The increasing
number of buildings has boosted this problem to a higher dangerous level each year, and
�re�ghters encounter room �res routinely in emergency response calls. More than 30,000
�re�ghters get injured each year during �re�ghting operations [1]. In a room with modern
furniture containing many combustible materials [2], such as chemical �bre/foam products,
�re tends to grow fast, which would leave a short period of time available for the �re�ghters
to rescue, operate, and escape until the room �ashover. When the room �ashover occurs, all
the combustible materials in the room are suddenly ignited near-simultaneously since the
hot smoke layer accumulated near the ceiling rapidly heats the exposed surface of all the
items in the room. Figure 1.A to 1.D shows a few images of a test compartment �re. As
can be seen in Figure 1, it takes less than 3 mins from ignition to �ashover onset.

Failing to recognize signs of the impending �ashover could cost the lives of �re�ghters
and occupants in the building. There is no absolute criterion for �ashover prediction since
�ashover occurrence depends on several factors, such as room speci�cations, fuels in the
room, and the sizes of windows and doors. In a typical room �re, the onset of �ashover
corresponds to the time when the upper smoke layer in the room reaches a temperature
around 600 ◦C [3]. Also, at the time of �ashover occurrence, the heat �ux (HF) from the
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upper smoke layer reaches approximately 20 kW/m2 when measured on the �oor [3]. In
addition, as another criterion for �ashover detection, the onset of �ashover can be estimated
by monitoring the growth of the Heat Release Rate (HRR). While varied with the size of
the room, doors, and windows, the average HRR value needed for �ashover is more than
1000 kW and less than 2000 kW for a small room (the standard compartment mentioned
in ISO 9705 standard [4]) with one open doorway.

Various investigations have been conducted to develop a new method for �ashover de-
tection and prediction, employing HRR, HF, and temperature data [3�5]. Simulation data
by CFD (Computational Fluid Dynamics) modelling and data analysis by machine learning
techniques have been used to study �ashover occurrences and to predict �ashover onset time
[6�8]. Many of these studies used data such as temperature, HF, and HRR trends to detect
�ashover time, the acquisition of which requires various sensors and gauges. The main draw-
back of their methods is that several sensors such as thermocouples and heat �ux gauges
with su�cient high-temperature resistance should be �xed readily in speci�c places in a �re
compartment. Therefore, their �ashover prediction approaches cannot be easily utilized by
�re�ghters in actual �re situations. Rather, they could be used for limited analyses of a �re
in controlled environments and simulations.

With recent advancements in digital technology and computer science, thermal IR (In-
frared) and digital RGB cameras have become more a�ordable and powerful than before.
Thus, �re�ghters have been equipped with di�erent types of these cameras (see Figure 1.E).
Consequently, using these cameras currently available on the �reground could bring straight-
forward solutions for detecting and predicting �ashover. In addition, the new vision-based
solutions could be powered by the state-of-the-art machine learning (ML) techniques. For
instance, a recent study [9, 10] employed RGB and IR cameras to predict �ashover in room
�res [9], and the authors in [11] proposed a preliminary method for prediction of �ashover
time based on the dynamic change of measured smoke area in RGB video data.

Figure 1. (A-D) Quick growth of �re in a test room �re. Flashover happens in less than
three minutes in a room with furniture and book shelves. (E) A �re�ghter uses one
thermal IR camera before going into a building with �re.

To maximize the data analytics of both RGB and thermal IR data, which is essential
in developing a powerful vision-based technique for �ashover detection and prediction, it is
necessary to extract features such as the temperature of smoke from the di�erent RGB and
thermal IR frames by aligning them from the same �eld of view and in the same scale. To
mitigate this problem, [9, 10, 12] modi�ed Generative Adversarial Networks (GANs), which
is a new deep learning method for image transformation, followed by image segmentation
techniques are used to �nd superimposed RGB and thermal IR data. The drawback of this
idea is that transformed data could not be completely accurate and reliable, and the whole
process is computationally expensive. The authors in [13] studied �ashover prediction in
image data generated by CFD-based simulations. For this reason, an approach relying only
on IR data or RGB video data entices fully automatic solutions saving some loops of image
processing.
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2. Method

In this study, we proposed a new classi�er using deep learning to detect �ashover occur-
rences in room �res captured by a thermal IR camera. Our approach is fully automatic
and end-to-end since it relies only on the IR data without using RGB video data, which
enhances the accuracy and speed of the solution. Convolutional Neural Networks (CNN) are
feedforward neural networks with several consecutive layers designed, inspired by the visual
cortex region in the human brain, to extract hierarchies of digitalized data features such as
images from low-level to high-level patterns [14]. A typical CNN model consists of an input
layer, many convolutional blocks, a few fully connected layers, and an output layer. Each
convolutional block consisting of convolutional layers might be followed by pooling, drop-
outs, and batch-normalization layers [14, 15]. Mathematically, CNN is a simple linear and
non-linear weight multiplication from input to output. By �ne-tuning thousands of weights
in di�erent layers of CNN, it can memorize or be trained to extract features of input data.
Depending on the application, the output layer acts as a classi�er and classi�es input data
based on extracted features. Training of a CNN network is an iterative optimization process
in which the gradient of error (the di�erence between the output images and ground-truth
images) is calculated layer by layer using the chain rule and back-propagated from the out-
put layer to the input layer in each iteration. After several iterations, network weights are
tuned to extract features from even novel input images. Deep details of CNN architectures
and functionality of each layer can be found in deep learning literature [14�16].

In spite of the achievements of CNN models in various computer vision tasks, the number
of convolutional layers in original CNN models was limited to a few layers. The reason is
that the back-propagated gradient, calculated from the output layer toward the input layer,
decreases after each backward layer. For a CNN architecture with hundreds of layers, the
gradient reaches zero ahead of the input layer. This problem is called the vanishing gradient.
One of the recent enhancements in CNN models to mitigate this problem is convolutional
blocks named Residual block [17]. Figure 2 shows a sample of the residual block where
gradient could also skip between CNN layers to avoid vanishing. This new idea helps
researchers to propose and train various deeper convolutional neural networks applicable
to more complicated computer vision problems than the previous CNN models. In the
present study, we selected the Residual Network model [17] with 18 layers (ResNet18). We
trained ResNet18 from scratch for detecting �ashover in thermal IR image sequences. We
also trained ResNet18 using transfer learning [18] by freezing all layers of the CNN network
while training only the last fully connected layer. ResNet18 was initialized in both training
approaches by pre-trained weights using ImageNet [19] dataset. We modi�ed the last layer
of ResNet18 to have two neurons. Details of the ResNet18 network used in this study are
presented in Figure 3.

Figure 2. A simple residual block. The gradient of error also passes through a skip
connection to avoid the gradient vanishing problems.
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Figure 3. Details of ResNet18 architecture used in our study.

3. Experiments and Discussions

3.1. Dataset Preparation

In order to train, validate, and test our ResNet18 model, we gathered data consisting of
thermal IR image frames captured from six room �res, which were conducted by the Fire
Safety Unit, the National Research Council of Canada (NRC), Canada [20] for the Char-
acterization of Fires in Multi-Suite Residential Dwellings (CFMRD) project. Thermal IR
video and sensor data were acquired from the six tests using di�erent room speci�cations
and materials. By synchronizing thermal IR videos with the data from sensors, we could �nd
the �ashover onset and determine the corresponding IR frame. In general, we considered
four videos for training and validation with the ratio of 90% and 10%, respectively. Table
1 provides metadata of the videos used in our experiments. To test our trained ResNet18
models, we considered two novel full thermal IR videos: 23-SI-76 comprising �ashover (Fig-
ure 4.A) and 22-SI-22 (Figure 4.B) containing no �ashover. As it can be seen from Figure
4, both videos have similar scene and �re conditions; however, analysis of the data recorded
by sensors and thermal IR video veri�ed that �ashover did not occur in the test 22-SI-22.
It is noteworthy to mention that thermal IR videos contain thermal information where the
intensity of pixels is not in the range of RGB video data (i.e., [0-255]) used in computer
vision applications. However, normalizing thermal IR video frames into the range of [0-255]
made them not only useable as similar to RGB format but also preserved the original ther-
mal information in the form of intensity levels. It means that the higher the intensity, the
higher the temperature in those pixels.

Figure 4. Few randomly selected frames from the thermal IR video (A) 23-SI-76, (B)
22-SI-22. Note the similarity between the two videos in terms of �re growth and scene
characteristics.

Table 1 also itemized the number of thermal IR frames used in our experiments as well
as the frame identi�ed as the �ashover onset, which was determined using the common
�ashover criteria (Temperature, HF, and HRR). The detail of the test room speci�cations,
the number of sensors, the types of burning materials in each room and the test data can be
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IR Video name Utilization Burning items
The number of IR
frames from ignition
to end of �ashover

The frame number of
the �ashover onset

PRF-07 Train/Validation Combination 113 92

08-SI-04 Train/Validation Mattress 64 48

14-SI-06 Train/Validation Mattress 34 22

21-SI-10 Train/Validation Bed and Mattress 104 60

22-SI-22 Test no Flashover Toys 364 -

23-SI-76 Test Flashover Bed assembly 228 163

Table 1. Metadata related to thermal IR videos used in our experiments.

found in the original CFMRD report [20]. Our train/validation dataset contains 222 frames
of no-�ashover scenes and 93 �ashover scenes, in total 315 thermal IR frames. For this
reason, the dataset is not balanced between the two classes of no-�ashover and �ashover.
To mitigate the problem of small dataset size, we used a simple data augmentation consisting
of normalization, random and center cropping and resizing, and horizontal �ipping.

3.2. Experiments and Results

As mentioned in the previous section, we developed two versions of ResNet18 by training
the whole network and training the last layer by transfer learning method using pre-trained
weights from the ImageNet dataset [19]. The input size of both networks is 224×224, and we
selected Cross-Entropy loss function, and Stochastic Gradient Descent (SGD) optimization
algorithms [15] for training and validation. The learning rate of SGD gradually decreases
from 0.001 in every seven iterations using parameter values of 0.9 for momentum and 0.1 for
gamma. In general, we used the mini-batch training method by randomly selecting mini-
batches of size 5 for 25 epochs for both ResNet18 models. The models with the best loss
and accuracy values in the validation stage were saved for the subsequent testing stage. The
whole experiments were conducted by a Tower PC equipped with an NVidia Titan RTX
GPU in Python language and using PyTorch deep learning library.

Our �ashover detection experimental results revealed that both ResNet18 models per-
formed similarly for the test video 23-SI-76. In contrast, for the test video 22-SI-22, the
�ne-tuned ResNet18 by transfer learning performed better with fewer false �ashover detec-
tions. Figure 5 to 8 present �ashover prediction of our method, compared with the sensor
data from the room �re tests. In the �gures, the �ashover period is marked from its onset
estimated based on the sensor data. The temperature of the near ceiling region, HRR and
heat �ux on the �oor are plotted and compared with our model results of �ashover probabil-
ity since �re-safety experts consider all �ashover criteria together (i.e., the temperature of
near ceiling region, HRR, door, and window speci�cations, and heat �ux on �oor level). In
Figure 5 and 6, it can be seen that ResNet18 can detect the impending �ashover quite earlier
(speci�cally, on average 41 seconds (or 21 frames) in advance with an average probability of
94.4% �ashover detection) than the actual �ashover onset veri�ed by the test sensor data.
One reason for this early detection is that in visual terms dissected in a second, �ashover
onset is not a sharp phenomenon, and pre-�ashover frames have a high visual correlation
with the frames of the �ashover region, which is well captured by our model.

Our experimental results also show that the sharp increase in ResNet18 predictions before
the actual �ashover (such as in Figure 5) can be generalized as a promising solution for the
prediction of �ashover. To evaluate the performance of ResNet18 models for situations where
the �re doesn't grow to the �ashover level, we conducted the same comparison study of our
model for the test video 22-SI-22. The sensor data from the test veri�ed that no �ashover
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happened in the 22-SI-22 experiment. As compared in Figure 7 and 8, the ResNet18 model
trained by the transfer learning method performed better than the ResNet18 model trained
from scratch. This was not an unexpected conclusion since many studies have proved that
training a deep learning model by the idea of transfer learning and domain adaptation
increases the performance of the model in most cases.

Figure 5. Results of �ashover detection by ResNet18 model trained from scratch, which
is compared with the �ashover period veri�ed by the sensor data from the room �re test
of 23-SI-76.

Figure 6. Results of �ashover detection by ResNet18 model which only its last layer
trained by transfer learning technique, which is compared with the �ashover period
veri�ed by the sensor data from the room �re test of 23-SI-76.

There are plenty of predetermined classi�cation and detection metrics (see Table 2) that
allow us to assess the performance of our deep learning models. To calculate those metrics,
the �rst step is to determine the confusion matrix for each experiment that presents the
number of true positive (TP), true negative (TN), false positive (FP) and false negative (FN)
predictions. Binary classi�cation is a particular problem where there are just two classes
of data, in our case: �ashover (positive) and non-�ashover (negative). Since the output of
the last dense layer of deep learning models is the probability of �ashover occurrence in
every frame of test videos, a threshold value should be applied to convert the probabilities
into binary values. For this reason, the values of classi�cation metrics are dependent on the
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Figure 7. Results of �ashover detection by ResNet18 model trained from scratch, which
is compared with the �ashover period veri�ed by the sensor data from the room �re test
of 22-SI-22.

Figure 8. Results of �ashover detection by ResNet18 model which only its last layer
trained by transfer learning technique, which is compared with the �ashover period
veri�ed by the sensor data from the room �re test of 22-SI-22.

selected threshold value. We evaluated our ResNet18 models on the two test thermal video
data. Figure 9 present classi�cation metrics rates for each experiment.

False Positive Rate (FPR) (Equation 1) is also known as type I error. This criterion
shows the fraction of false alerts that our model predicted. It is important for �re safety
research because as the False Positive alarm raised by the system would be a massive waste
of �re safety resources. False Negative Rate (FNR) (Equation 2), also known as type II
error, is one of the most critical metrics for �re safety research which shows what portion of
the �ashover frames were predicted by the model as non-�ashover cases. True Negative Rate
(TNR) (Equation 3) or Speci�city measures how many cases out of all the non-�ashover
cases the model could classify as non-�ashover correctly. Similarly, True Positive Rate
(TPR) (Equation 4) or Recall, also known as Sensitivity, looks for how many �ashover cases
correctly have been classi�ed as a �ashover situation. These four metrics are barely used
alone for evaluations of the classi�cation results, and they are utilized for calculating more
reliable metrics. From �gure 9, both models show relatively low values for FPR and FNR
and high values for TNR and TPR for thresholds between 30 and 70 which can be considered
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Type I Error FPR=FP/(FP+TN) Equation 1

Type II Error FNR=FN/(TP+FN) Equation 2

Speci�city TNR=TN/(TN+FP) Equation 3

Recall TPR=TP/(TP+FN) Equation 4

Precision PPV=TP/(TP+FP) Equation 5

Accuracy ACC=(TP+TN)/(TP+FP+TN+FN) Equation 6

F1 Score F1 score=2TP/(2TP+FP+FN) Equation 7

Table 2. De�nition of classi�cation evaluation metrics used in this study.

as good classi�ers. FPR value rarely reached zero, and the reason is that there is no clear,
sharp border between �ashover and non-�ashover region in our test thermal IR video data.
It also indicates that our system should work pretty well for �re cases similar to the ones in
our dataset. At the same time, the imbalanced nature of our dataset, with fewer positive
samples than negative ones, is the reason for getting non-zero FNR for thresholds of more
than 30.

We calculated Positive Predictive Value (PPV) (Equation 5) or Precision to measure how
many �ashover cases are in fact actual �ashovers. Our experimental results show that our
models can reach the precision of 0.8, which is good for our dataset with a limited number of
samples. Usage of Accuracy (ACC) (Equation 6) metric for an imbalanced dataset like ours
will provide a better result. However, we determined the accuracy by measuring how many
cases, both �ashover and non-�ashover, were correctly classi�ed. Our best ResNet18 model
could reach an average accuracy of 91.3%, which is considerable. From the combination
of precision and recall, we could �nd F1 score criteria (Equation 7). It is one of the most
commonly used metrics for classi�cation tasks in the machine learning area. The higher
the F1 score is, the classi�cation model performs better. It is also crucial for the dataset
with unbalanced samples on performance judgement. Thus, it would tell more than other
metrics, such as accuracy, considering the nature of our dataset. Our best ResNet18 model
could reach the average F1-score of 84.1%. From the F1 score, we can also determine which
threshold value could be selected for our experiments. It can be seen from Figure 9 that the
results of our models will not be changed signi�cantly by changing the thresholds, which
indicates the robustness of our ResNet18 models.

There is a trade-o� between many classi�cation metrics. For instance, TPR and FPR are
in contrast. To �gure out this trade-o� better, we draw TPR and FPR for every threshold
value in a graph known as Receiver Operating Characteristic (ROC). For all threshold values,
a larger area under the ROC Curve (AUC) means better classi�cation results. Similar to the
F1 score, AUC has advantages in revealing the real performance on an unbalanced dataset
by considering the impact of both the positive samples and negative samples. Therefore, it is
vital to our model. Likewise, we can analyze the trade-o� between precision and recall values
and determine the AUC of this graph as well. Figure 10 shows the ROC and Precision-Recall
graphs related to both ResNet18 models for the test thermal IR video 23-SI-76, where the
AUC for the ResNet18 model trained from scratch was 0.88, and the model �ne-tuned its
last layer by transfer learning reached to AUC of 0.93.

4. Conclusion

In this study, we showed that deep convolutional neural networks, speci�cally the ResNet18
model, can be trained by a small number of IR thermal images using a domain adaptation
approach to detect �ashover onset in thermal IR videos. Unlike previous attempts of us-
ing deep learning methods for �ashover prediction, our approach is end-to-end and fully
automatic, without using any data processing, video transformations, or extensive data
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Figure 9. Comparison between classi�cation metrics to evaluate our deep learning mod-
els for test thermal IR video 23-SI-76 (A) ResNet18 trained from scratch, (B) ResNet18
trained by �ne-tuning the last layer by transfer learning approach.

Figure 10. Comparison between classi�cation metrics to evaluate our deep learning mod-
els for test thermal IR video 23-SI-76 (A) ResNet18 trained from scratch, (B) ResNet18
trained by �ne-tuning the last layer by transfer learning approach.
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augmentation. The temperature of the smoke layer near the ceiling and heat �ux of �oor
gathered by sensors and gauges as well as calculated heat release rate from room �re tests
were also used to determine the accurate occurrence of �ashover in terms of time and the
corresponding IR frame in our dataset. Two thermal IR videos were selected, one cap-
tured from a room �re test with no-�ashover and another room �re test with �ashover to
evaluate our proposed deep learning methods. The comparison study between the network
predictions for the two test thermal IR videos and the sensor data from the room �re tests
indicates that the ResNet18 model can detect the impending �ashover earlier than the ac-
tual �ashover onset. We also calculated a comprehensive list of classi�cation performance
metrics to evaluate our methods. ResNet18 models could reach an average accuracy of 91%
with the ROC of 0.93, which is a considerable result relative to our small dataset. As a
future path, our new vision-based technique, bene�ting only from thermal IR video data, is
a promising solution that can be used in predicting �ashover way before it actually occurs.
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