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Abstract
In the past decade deep learning models have achieved impressive performance on

a wide range of tasks. However, they still face challenges in many high-stakes prob-
lems. In this paper we study Legal Judgment Prediction (LJP), which is an important
high-stakes task utilizing fact descriptions obtained from court cases to make final judge-
ments. We investigate the state-of-the-art of the LJP task by leveraging the most recent
deep learning models, longformer, and demonstrate that we obtain the state-of-the-art
performance, even with a limited amount of training data, benefiting from the advan-
tage of pretraining and the long-sequence modeling capability of longformer. However,
our analyses suggest that the improvement is due to the model’s fitting to spurious
correlations, in which the model makes correct decisions based on information irrele-
vant to the task itself. We advocate that caution should be seriously exercised when
explaining the obtained results. The second challenge in many high-stakes problems is
interpretability required for models. The final predictions made by deep learning models
are useful only if the evidences that support the models’ decisions are consistent with
those used by subject-matter experts. We demonstrate that by using post-hoc interpre-
tation, the conventional method XGBoost is actually capable of providing explainable
results with a performance comparable to the longformer model, while not being subject
to the spurious correlation issue. We hope our work contributes to the line of research on
understanding the advantages and limitations of deep learning for high-stakes problems.
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1. Introduction

Legal Judgment Prediction (LJP) is an important task which involves utilizing fact de-
scriptions obtained from court cases in order to make decisions of the final outcome. The
development of these models is crucial as they can reduce the time taken by legal profes-
sionals in determining the outcome of an ongoing case [1]. Alternatively, they may be used
by these same professionals to reinforce their opinion on a decision to be made. By ana-
lyzing the bias which may have been present, practitioners in the legal field can identify
decisions which may have previously been made due to various other commonly present
factors, such as nationality or gender [2]. This factor is essential in determining a lesser
number of cases which are able to generalize well and contain an acceptable amount of
human bias for further annotations by professionals, as this task may be expensive and
time-consuming. Additional insights in the model behaviour are essential in high-stakes
decision making fields such as healthcare, finance, and law. For this reason, we are not only
interested in analyzing predictions which are made by models, and obtaining models with
capabilities of high performance, but we are also interested in interpretability. Previous
works utilizing fact descriptions in predicting final outcomes under binary classification and
multi-label classification settings [3] mainly focus on performance, and interpretability is
largely ignored. Few works [4] tackle the challenge of interpretability for legal judgment
prediction, although they are mainly focussed on datasets in the Chinese language.
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In this paper, we obtain state-of-the-art results by using a transformer-based model called
longformer [5], capable of modelling long sequences. To the best of our knowledge, we are
the first at utilizing the longformer for the LJP task. Previous models such as BERT [6],
were restricted to modelling sequence lengths of 512 tokens. The task in the legal domain we
tackle for achieving these results is the high-stakes decision making problem of LJP, which
comprises of binary classification for determining the presence of a violation in a human
rights article. As per our analyses, we find that improvement in the models’ predictive
capabilities is due to the fact that these results were reliant on spurious correlations. This
fact is echoed in our results, as state-of-the-art performance is obtainable even under the
consideration of a limited amount of training data, leading to sparse data conditions. In
other words, we must be wary of the capabilities of transformer-based models producing
state-of-the-art results in the legal judgment task, as they may be due to the wrong reasons.
Through making use of post-hoc interpretation methods such as LIME [7], we are able to ad-
dress the challenge of high-stakes decision-making having the requirement of interpretability.
We exhibit the capabilities of the conventional XGBoost model [8] in providing explainable
results with similar performance to that of the best results produced by the longformer [5].

2. Related Work

Language modelling architectures have been created for modelling long sequences [5],
which are particularly useful for legal tasks, as court cases comprise of long documents.
Most current legal document classification works utilize hierarchical architectures [3], while
other works simply pose the long document challenge [9]. In this work, we use a recently
introduced transformer-based model for modelling long sequences, called longformer [5].

Previous works have also dealt with elements pertaining to explaining specific model pre-
dictions, and this can be seen as an important goal in research for interpretability. However,
it is non-trivial to explain why a deep non-linear neural network model makes a certain de-
cision, a task categorized under the umbrella of ante-hoc methods [10]. For the uncertainty,
and lack of ability of these methods to draw out a cross-comparison between models chosen
in this paper, we refrain from utilizing ante-hoc methods. On the other hand, post-hoc inter-
pretability is the application of interpretation methods to a trained model. We utilize LIME
[7], and Layer Integrated Gradients [11] to obtain insights on the decision-making path from
input text to outputs of our models for classification. In the legal field, [12] highlights the
importance of using such methods, although the application has largely been unexplored.
In this work, we explore the application of these post-hoc interpretation methods to the
task of legal judgment prediction.

3. Dataset

We utilize the ECHR dataset [3] for experiments. The dataset is split into training,
validation and testing sets. The training and validation datasets are roughly balanced,
and the test set is imbalanced, with 66% of cases having violations. The ground truth
corresponds to the presence/absence of violations in cases. Following the original work [3],
we also utilize an anonymized dataset to identify tokens which may be influencing predictions
based on demographic or factual information. This setting simply makes use of a named
entity recognizer to replace tokens related to location, gender, etc. with type tags [3].

4. Methodology

We utilize a combination of different methods for models and interpretations methods
to identify the best performing pair in terms of performance, and explainability. We em-
phasize that in this paper, we treat both, the models, and these interpretability methods
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Figure 1. The model is trained on input sequences for the binary classification task of
predicting "Violation/No Violation". Through post-hoc interpretation methods, we are
able to derive impact of tokens on probabilities influencing the model output

as black-boxes. Hence we do not detail specifics about perturbations on instances of our
test dataset. Instead, we simply utilize the interpretability methods as tools for producing
simpler models which may be capable of providing explanations.

XGBoost: This model is created by an ensemble of weak prediction decision trees [8]. In
addition to performance, XGBoost is highly interpretable, making it an ideal candidate for
experiments.
Longformer: The recently introduced transformer-based model is able to achieve state-of-
the-art results on long sequences. It makes use of a linearly scalable attention mechanism,
which combines a local windowed attention with a task motivated global attention [5]. Due
to the performance achieved on long sequences, we select this model to gain insights on
attributes influencing decisions made.
LIME: Local Interpretable Model-agnostic Explanations (LIME) [7] is a widely used method.
It works by learning a sparse linear model around a perturbed instance, which we consider as
our test case. The idea behind creating a simpler model to provide an interpretation is that
it may be more difficult to obtain an interpretation globally, whereas obtaining the same
locally is simpler. In this paper, we use LIME for both models XGBoost, and Longformer.
Layer Integrated Gradients: A strong axiomatic attribution method [11] which can be
used for identifying input features which attribute to a prediction of a deep neural network.
We use this method for Longformer to gain additional insights in the model behaviour.

5. Experimental Setup

For the XGBoost model, we utilize TF-IDF vectors with an ngram range of (1, 5),
following the hyperparameter values set in the original paper [3]. For purposes of providing
interpretation, we use LIME [7] out-of-the-box with default parameters, which produces 10
features under the consideration of 5000 samples.

For the longformer model, we run experiments with a batch size of 1, learning rate of
2e-5, and for 10 epochs on two RTX 2080Ti GPUs. Training time for 100% of the data is
≈ 8 hours. For purposes of providing interpretation for the transformer-based model using
LIME, we set the number of features calculated to 5, and the number of samples to 50. For
the layer integrated gradient [11] method, we set the number of attribution steps to 500.
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6. Results and Discussion

Results on both, non-anonymized and anonymized datasets are shown in Table 1. The
results of the majority class are identical to those shown in [3]. Under the non-anonymized
data setting, our XGBoost model achieves stable, and high performance which is comparable
to the results of our transformer-based model for the same setting. The longformer, being
capable of modelling longer sequences achieves better results consistently as expected. We
attain state-of-the-art results by a margin of ≈ 1% for the F1 score when utilizing as less
as 10% of the training data for the longformer model. However, we must be wary of the
results produced by utilizing lower amounts of training data here, as the performance may
be a direct result of spurious correlations.

For the anonymized setting, the XGBoost model consistently outperforms the longformer
under consideration of all variations of subsamples of data. Again, without utilizing the
entire training dataset, the best results are obtained using ≥ 50% of the training dataset for
both models considered. Under the anonymized data setting, we observe that the results
produced by the XGBoost model, again, are stable with variations in the amount of the
training data utilized. In addition to this, the XGBoost model consistently outperforms
the longformer. This indicates that the high performance of the longformer in the non-
anonymized setting may have been due to tokens such as gender and location which are
now replaced by type tags by anonymization. This directly accounts for decisions being
made for incorrect reasons, under the well-known problem of spurious correlations. On the
other hand, the performance of the XGBoost model in contrast to the longformer is largely
unaffected by the anonymized data setting. Further insights into decisions being made by
transformer-based models and the comparison with the conventional model can be drawn
from interpretation methods which perturb inputs and deal with the models themselves as
black boxes.

Table 1. F1 scores (macro-averaged) on the binary prediction task for presence of viola-
tion in court cases. Results for Hier-BERT, and HAN are taken from [3].

F1 Score

Majority Class 0.397

Non-Anonymized Anonymized

XGBoost (10%) 0.799 0.798
XGBoost (25%) 0.810 0.811
XGBoost (50%) 0.808 0.814
XGBoost (100%) 0.809 0.814

Longformer (10%) 0.832 0.539
Longformer (25%) 0.833 0.775
Longformer (50%) 0.827 0.797
Longformer (100%) 0.826 0.791

Hier-BERT (100%) 0.820± 0.009 -
HAN (100%) - 0.802 ±0.027

We use a post-hoc interpretation method [7] for the XGBoost model (LIME [7]). We
can observe from figure 2 that the most commonly occurring tokens which account for the
predictions are relatively unchanged in terms of impact on probability with respect to the
percentage of data utilized. This suggests that a limited amount of data may suffice in de-
termining not only the predictions, but also for the right reasons under the non-anonymized
dataset for the XGBoost model.
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Figure 2. Impact of common tokens on XGBoost model towards the presence (left), and
absence (right) of violation in binary classification for the non-anonymized dataset.

For the longformer model, we observe that post-hoc interpretation methods such as LIME
[7], and Layer Integrated Gradients [11], when used out-of-the-box, highlight the importance
of the beginning of sentences, punctuation, and numbers. In terms of interpretability, this
may suggest that the models may be making correct predictions for incorrect reasons. On the
other hand, it may suggest that invalid reasons are being picked up due to the computational
resource constraints of methods required for interpreting large transformer-based models.
Comparing it to the results for the longformer under the anonymized setting in Table 1,
we can observe that for state-of-the-art results obtained when utilizing 10% of the training
dataset may mostly have been due to the confidence of the model in the choice of a select
number of tokens which consistently appear in text leading to violations.

7. Conclusion

In this paper, we produce state-of-the-art results on a binary classification task of legal
judgment prediction for identifying violations in English under the non-anonymized data
setting using the longformer model. We observe that a limited number of training samples
are sufficient to achieve these results. Furthermore, under this data setting we can see that
the XGBoost model is capable of achieving comparable performance. We also experiment
with the anonymized data setting and conclude that conventional XGBoost models are
capable of outperforming transformer-based models under circumstances where the model
is unable to learn from tokens which lead to bias, such as nationality and gender. We can
conclude that the XGBoost model is largely unaffected by the introduced bias, whereas the
longformer is prone to learning from these bias-inducing tokens. This can be observed in the
reduced performance when comparing the anonymized setting of data for the longformer
with the non-anonymized setting. Finally, on experimentation with post-hoc interpretation
methods, we observe that predictions made by the XGBoost model at the bare-minimum,
offer transparency. On the other hand, the interpretability obtained by utilizing these
methods indicate that the transformer-based models may have been making predictions for
invalid reasons (spurious correlations).
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